• Title/Summary/Keyword: computation time reduction

Search Result 221, Processing Time 0.031 seconds

Performance of Image Reconstruction Techniques for Efficient Multimedia Transmission of Multi-Copter (멀티콥터의 효율적 멀티미디어 전송을 위한 이미지 복원 기법의 성능)

  • Hwang, Yu Min;Lee, Sun Yui;Lee, Sang Woon;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.104-110
    • /
    • 2014
  • This paper considers two reconstruction schemes of structured-sparse signals, turbo inference and Markov chain Monte Carlo (MCMC) inference, in compressed sensing(CS) technique that is recently getting an important issue for an efficient video wireless transmission system using multi-copter as an unmanned aerial vehicle. Proposed reconstruction algorithms are setting importance on reduction of image data sizes, fast reconstruction speed and errorless reconstruction. As a result of experimentation with twenty kinds of images, we can find turbo reconstruction algorithm based on loopy belief propagation(BP) has more excellent performances than MCMC algorithm based on Gibbs sampling as aspects of average reconstruction computation time, normalized mean squared error(NMSE) values.

Reducing Power Consumption of Wireless Capsule Endoscopy Utilizing Compressive Sensing Under Channel Constraint

  • Saputra, Oka Danil;Murti, Fahri Wisnu;Irfan, Mohammad;Putri, Nadea Nabilla;Shin, Soo Young
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.130-134
    • /
    • 2018
  • Wireless capsule endoscopy (WCE) is considered as recent technology for the detection cancer cells in the human digestive system. WCE sends the captured information from inside the body to a sensor on the skin surface through a wireless medium. In WCE, the design of low-power consumption devices is a challenging topic. In the Shannon-Nyquist sampling theorem, the number of samples should be at least twice the highest transmission frequency to reconstruct precise signals. The number of samples is proportional to the power consumption in wireless communication. This paper proposes compressive sensing as a method to reduce power consumption in WCE, by means of a trade-off between samples and reconstruction accuracy. The proposed scheme is validated under channel constraints, expressed as the realistic human body path loss. The results show that the proposed scheme achieves a significant reduction in WCE power consumption and achieves a faster computation time with low signal error reconstruction.

Binary Image Based Fast DoG Filter Using Zero-Dimensional Convolution and State Machine LUTs

  • Lee, Seung-Jun;Lee, Kye-Shin;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 2018
  • This work describes a binary image based fast Difference of Gaussian (DoG) filter using zero-dimensional (0-d) convolution and state machine look up tables (LUTs) for image and video stitching hardware platforms. The proposed approach for using binary images to obtain DoG filtering can significantly reduce the data size compared to conventional gray scale based DoG filters, yet binary images still preserve the key features of the image such as contours, edges, and corners. Furthermore, the binary image based DoG filtering can be realized with zero-dimensional convolution and state machine LUTs which eliminates the major portion of the adder and multiplier blocks that are generally used in conventional DoG filter hardware engines. This enables fast computation time along with the data size reduction which can lead to compact and low power image and video stitching hardware blocks. The proposed DoG filter using binary images has been implemented with a FPGA (Altera DE2-115), and the results have been verified.

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.

Digital Logic System Design based on Directed Cyclic graph (다이렉트사이클릭그래프에 기초한 디지털논리시스템 설계)

  • Park, Chun-Myoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 2009
  • This paper proposes the algorithms that design the highly digital logic circuit and assign the code to each node of DCG(Directed Cyclic Graph) of length ${\zeta}$. The conventional algorithm have some problems, so this paper introduce the matrix equation from DCG of length ${\zeta}$ and proposes highly digital logic circuit design algorithms according to the DCG of length ${\zeta}$. Using the proposed circuit design algorithms in this paper, it become realized that was able to design from former algorithm. Also, making a comparison between the circuit using former algorithm and this paper's, we testify that proposed paper's algorithm is able to realize more optimized circuit design. According to proposed circuit design algorithm in this paper, it is possible to design current that DCG have natural number, so it have the following advantages, reduction of the circuit input/output digits, simplification of circuit composition, reduction of computation time and cost. And we show comparability and verification about this paper's algorithm.

  • PDF

A Study on the Highly Parallel Multiple-Valued Logic Circuit Design using by the DCG (DCG에 의한 고속병렬다치논리회로설계에 관한 연구)

  • 변기녕;최재석;박춘명;김흥수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.6
    • /
    • pp.20-29
    • /
    • 1998
  • This paper proposes the algorithms that design the highly parallel multiple-valued logic curcuit and assign the code to each node of DCG(Directed Cyclic Graph) of length 1. The conventional Nakajima's algorithm have some problems, so this paper introduce the matrix equation from DCG of length 1 and proposes circuit design algorithms according to the DCG of length 1. Using the proposed circuit design algorithms in this paper, it become realized that was not able to design from Nakajima's algorithm. Also, making a comparision between the circuit design using Nakajima's algorithm and this paper's, we testify that proposed paper's algorithm is able to realize more optimized circuit design. According to proposed curcuit design algorithm in this paper, it is possible to design curcuit that DCG have natural number, so it have the following advantages; reduction of the curcuit input/output digits, simplification of curcuit composition, reduction of computation time and cost. And we show compatibility and verification about this paper's algorithm.

A New SLM Method using Dummy Sequence Insertion far the PAPR Reduction of the OFDM Communication System (OFDM통신 시스템의 PAPR저감을 위한 Dummy Sequence를 삽입하는 새로운 SLM 기법)

  • 이재은;허근재;김상우;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.379-386
    • /
    • 2004
  • OFDM(orthogonal frequency division multiplexing) communications system is very attractive for the high data rate transmissionin the frequency selective fading channel. Since OFDM has high PAPR(peak-to-average power ratio), OFDM signal may be distorted by the nonlinear HPA(high power amplifier). In this paper, we propose an improved dummy sequence scheme for reducing the PAPR in OFDM communication system. This method inserts each different dummy sequence at the predefined sub-carriers fur PAPR reduction. After IFFT, the OFDM data signal with the lowest PAPR is selected to transmit. The complementary sequence is used as dummy sequence. So, it can cut down the computation time and quantity because it dose not require the peak value optimization for finding the phase rotation factor and the transmission of the side information about the rotation factor unlike the PTS method.

Impmvement of Inverse Fitting Algorinlm of Visible Reflectance Spectrum to Extract Skin Parameters (피부의 특성 추출을 위한 가시광선 반사 스펙트럼의 역 추적 최적화 알고리즘 개선)

  • Choi, Seung-Ho;Im, Chang-Hwan;Jung, Byung-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.179-184
    • /
    • 2007
  • In order to extract more accurate skin parameters, this study was focused on the improvement of the efficiency of a previous inverse fitting algorithm based on genetic algorithms. The algorithm provides the best fitting result of the diffusion approximation model to a VRS (visual reflectance spectroscopy) curve of skin. Simplex and wavelength selection methods were applied to the previous algorithm. Nine skin parameters were inversely extracted from the modeling studies. The revised inverse fitting algorithm was determined to produce an 83% reduction of computation time and a 0.64% reduction of sum of square error, compared to the previous algorithm. In conclusion, we confirmed that the new algorithm provides faster and more accurate solutions for the diffusion approximation model.

A New Overlap Save Algorithm for Fast Convolution (고속 컨벌루션을 위한 새로운 중첩보류기법)

  • Kuk, Jung-Gap;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.543-550
    • /
    • 2009
  • The most widely used block convolution method is the overlap save algorithm (OSA), where a block of M data to be convolved with a filter is concatenated with the previous block and 2M-point FFT and multiplications are performed for this overlapped block. By discarding half of the results, we obtain linear convolution results from the circular convolution. This paper proposes a new transform which reduces the block size to only M for the block convolution. The proposed transform can be implemented as the M multiplications followed by M-point FFT Hence, existing efficient FFT libraries and hardware can be exploited for the implementation of proposed method. Since the required transform size is half that of the conventional method, the overall computational complexity is reduced. Also the reduced transform size results in the reduction of data access time and cash miss-hit ratio, and thus the overall CPU time is reduced. Experiments show that the proposed method requires less computation time than the conventional OSA.

An Efficient Vehicle Image Compensation Algorithm based on Histogram Equalization (히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2192-2200
    • /
    • 2015
  • In this paper, we propose an efficient vehicle image compensation algorithm based on Histogram Equalization. The proposed a vehicle image compensation algorithm was elimination to the vehicle image shake using motion compensation and motion estimation. And, algorithm was calculated the histogram of pixel values from each sub-image by dividing the image as the constant size areas in order to image enhancement. Also, it had enhancement to the image by adjusting the gradient. The proposed algorithm was evaluate the difference between of performance and time, image by applied to the IP, and were confirmed the image enhancement with removing of vehicle camera image shake. In this paper, the proposed vehicle image enhancement algorithm was demonstrated effectiveness when compared to existing vehicle image stabilization, because the elimination of shake for the vehicle images used real-time processing without using a memory. And it was obtained the reduction effect of the computation time by the calculated through block matching, and obtained the better restoration result for naturalness of the image with the lowest noise.