• Title/Summary/Keyword: computation and communication efficiency

Search Result 112, Processing Time 0.035 seconds

Reducing Rekeying Time Using an Integrated Group Key Agreement Scheme

  • Gu, Xiaozhuo;Zhao, Youjian;Yang, Jianzu
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.418-428
    • /
    • 2012
  • With the requirement for providing multiple levels of access control for group members, many group key management schemes designed for hierarchical access control have been put forward. However, most of these schemes focus on the efficiency of group key establishment and rekeying in centralized environments. This paper proposes an integrated group key agreement (IGK) scheme for contributory environments. The IGK scheme employs the integrated key graph to remove key redundancies existing in single key trees, and reduces key establishment and rekeying time while providing hierarchical access control. Performance analyses and simulations conducted with respect to computation and communication overheads indicate that our proposed IGK scheme is more efficient than the independent group key agreement scheme.

Current Trend and Direction of Deep Learning Method to Railroad Defect Detection and Inspection

  • Han, Seokmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.149-154
    • /
    • 2022
  • In recent years, the application of deep learning method to computer vision has shown to achieve great performances. Thus, many research projects have also applied deep learning technology to railroad defect detection. In this paper, we have reviewed the researches that applied computer vision based deep learning method to railroad defect detection and inspection, and have discussed the current trend and the direction of those researches. Many research projects were targeted to operate automatically without visual inspection of human and to work in real-time. Therefore, methods to speed up the computation were also investigated. The reduction of the number of learning parameters was considered important to improve computation efficiency. In addition to computation speed issue, the problem of annotation was also discussed in some research projects. To alleviate the problem of time consuming annotation, some kinds of automatic segmentation of the railroad defect or self-supervised methods have been suggested.

A fast exponentiation with sparse prime (Sparse 소수를 사용한 효과적인 지수연산)

  • 고재영;박봉주;김인중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1024-1034
    • /
    • 1998
  • Most public cryptosystem widely used in communication network are based on the exponentiation-arithmetic. But, cryptosystem has to use bigger and bigger key parameter to attain an adequate level of security. This situation increases both computation and time delay. Montgomery, yang and Kawamura presented a method by using the pre-computation, intermediately computing and table look-up on modular reduction. Coster, Brickel and Lee persented also a method by using the pre-computation on exponentiation. This paper propose to reduce computation of exponentiation with spare prime. This method is to enhance computation efficiency in cryptosystem used discrete logarithms.

  • PDF

A Hybrid Algorithm to Reduce the Computation Time of Genetic Algorithm for Designing Binary Phase Holograms

  • Nguyen, The-Anh;An, Jun-Won;Choi, Jae-Kwang;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.264-268
    • /
    • 2003
  • A new approach to design binary phase holograms, with less computation time and equal effi-ciency compared with the genetic algorithm method, is proposed. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are tested in computer simulation and experimentally demonstrated.

An RFID Distance Bounding Protocol Based on Cryptographic Puzzles Providing Strong Privacy and Computational Efficiency (강한 프라이버시와 연산 효율성을 제공하는 암호 퍼즐 기반 RFID 경계 결정 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Nam, In-Gil
    • The KIPS Transactions:PartC
    • /
    • v.19C no.1
    • /
    • pp.9-18
    • /
    • 2012
  • In 2010, Pedro et al. proposed RFID distance bounding protocol based on WSBC cryptographic puzzle. This paper points out that Pedro et al.'s protocol not only is vulnerable to tag privacy invasion attack and location tracking attack because an attacker can easily obtain the secret key(ID) of a legal tag from the intercepted messages between the reader and the tag, but also requires heavy computation by performing symmetric key operations of the resource limited passive tag and many communication rounds between the reader and the tag. Moreover, to resolve the security weakness and the computation/communication efficiency problems, this paper also present a new RFID distance bounding protocol based on WSBC cryptographic puzzle that can provide strong security and high efficiency. As a result, the proposed protocol not only provides computational and communicational efficiency because it requires secure one-way hash function for the passive tag and it reduces communication rounds, but also provides strong security because both tag and reader use secure one-way hash function to protect their exchanging messages.

Performance Optimization of Parallel Algorithms

  • Hudik, Martin;Hodon, Michal
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.436-446
    • /
    • 2014
  • The high intensity of research and modeling in fields of mathematics, physics, biology and chemistry requires new computing resources. For the big computational complexity of such tasks computing time is large and costly. The most efficient way to increase efficiency is to adopt parallel principles. Purpose of this paper is to present the issue of parallel computing with emphasis on the analysis of parallel systems, the impact of communication delays on their efficiency and on overall execution time. Paper focuses is on finite algorithms for solving systems of linear equations, namely the matrix manipulation (Gauss elimination method, GEM). Algorithms are designed for architectures with shared memory (open multiprocessing, openMP), distributed-memory (message passing interface, MPI) and for their combination (MPI + openMP). The properties of the algorithms were analytically determined and they were experimentally verified. The conclusions are drawn for theory and practice.

A Function Level Static Offloading Scheme for Saving Energy of Mobile Devices in Mobile Cloud Computing (모바일 클라우드 컴퓨팅에서 모바일 기기의 에너지 절약을 위한 함수 수준 정적 오프로딩 기법)

  • Min, Hong;Jung, Jinman;Heo, Junyoung
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.707-712
    • /
    • 2015
  • Mobile cloud computing is a technology that uses cloud services to overcome resource constrains of a mobile device, and it applies the computation offloading scheme to transfer a portion of a task which should be executed from a mobile device to the cloud. If the communication cost of the computation offloading is less than the computation cost of a mobile device, the mobile device commits a certain task to the cloud. The previous cost analysis models, which were used for separating functions running on a mobile device and functions transferring to the cloud, only considered the amount of data transfer and response time as the offloading cost. In this paper, we proposed a new task partitioning scheme that considers the frequency of function calls and data synchronization, during the cost estimation of the computation offloading. We also verified the energy efficiency of the proposed scheme by using experimental results.

The Design of Motion Estimation Hardware for High-Performance HEVC Encoder (고성능 HEVC 부호기를 위한 움직임추정 하드웨어 설계)

  • Park, Seungyong;Jeon, Sunghun;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.594-600
    • /
    • 2017
  • This paper proposes a global search based motion estimation algorithm for high performance HEVC encoder and its hardware architecture. To eliminate temporal redundancy, motion estimation in HEVC inter-view prediction uses global search and fast search algorithm to search for a predicted block having a high correlation with the current PU in an interpolated reference picture. The global search method predicts the motion of all candidate blocks in a given search area, thus ensuring optimal results, but has a disadvantage of large computation time. Therefore we propose a new algorithm that reduces computational complexity by reusing SAD operation in global search to reduce computation time of inter prediction. As a result of applying the proposed algorithm to standard software HM16.12, the computation time was reduced by 61%, BDBitrate by 11.81%, and BDPSNR by about 0.5% compared with the existing search algorithm. As a result of hardware design, the maximum operating frequency is 255 MHz and the total number of gates is 65.1K.

An Efficient Indexing Structure for Multidimensional Categorical Range Aggregation Query

  • Yang, Jian;Zhao, Chongchong;Li, Chao;Xing, Chunxiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.597-618
    • /
    • 2019
  • Categorical range aggregation, which is conceptually equivalent to running a range aggregation query separately on multiple datasets, returns the query result on each dataset. The challenge is when the number of dataset is as large as hundreds or thousands, it takes a lot of computation time and I/O. In previous work, only a single dimension of the range restriction has been solved, and in practice, more applications are being used to calculate multiple range restriction statistics. We proposed MCRI-Tree, an index structure designed to solve multi-dimensional categorical range aggregation queries, which can utilize main memory to maximize the efficiency of CRA queries. Specifically, the MCRI-Tree answers any query in $O(nk^{n-1})$ I/Os (where n is the number of dimensions, and k denotes the maximum number of pages covered in one dimension among all the n dimensions during a query). The practical efficiency of our technique is demonstrated with extensive experiments.

Micro-crack Detection in Heterogeneously Textured Surface of Polycrystalline Solar Cell

  • Ko, JinSeok;Rheem, JaeYeol;Oh, Ki-Won;Choi, Kang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.23-26
    • /
    • 2015
  • A seam carving based micro-crack detection method is proposed which aims at detecting the micro-crack regions in heterogeneously textured surface of polycrystalline solar cells. By calculating the seam which is a connected path of low energy pixels in the image, the micro-crack regions can be detected. Experimental results show that the proposed seam carving based micro-crack detection method has superior efficiency in detecting the micro-crack without background noise pixels and the algorithm's computation time is less than the conventional algorithm.