• Title/Summary/Keyword: compressor system

Search Result 1,074, Processing Time 0.028 seconds

Prediction and Reduction of Transient Vibration of Piping System for a Rotary Compressor (공조용 압축기 배관계의 과도진동 예측 및 저감설계)

  • Ryu, Sang-Mo;Jeong, Weui-Bong;Han, Hyung-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.733-740
    • /
    • 2011
  • This paper deals with the process to identify the transient exciting force generated from a rotary compressor. The compressor was assumed to be a rigid body. The equation of motion of a rigid compressor supported by three mounts was derived with 6 degree-of-freedom. The exciting forces at the center of mass of the compressor were estimated from the acceleration data measured at compressor shell. Compressor-pipe system was modeled numerically. The accelerations of compressor and pipe were predicted numerically by using the estimated exciting force. A new shape of pipe model was proposed to reduce the vibration. In the prediction by the method in this paper, the maximum acceleration of the pipe could be reduced by 53.7 % at the steady-state and by 12 % at the transient process. In the real experiments, the maximum acceleration of the pipe was reduced by 54.2 % at steady-state and 14.7 % at the transient process. It was verified that the numerical results showed good agreement with experimental results.

Benchmark Performance Analysis of Vapor Compression System with Capacity Modulation Compressor (에어컨의 고효율화를 위한 용량가변 방식 비교에 관한 연구)

  • 유윤호;황윤제;김철민;조관식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.98-107
    • /
    • 2002
  • The performance of a capacity controlled system, which are tandem, pole change, bypass and inverter driven compressor, has been compared with that of a con- ventional constant speed system. It has been found that capacity modulated system can offer more than 14 percent improvement in SEER over the conventional system. Comparative test results show that two compressor system can attain an improvement in SEER up to 42% over the conventional on/off system, and is feasible without additional investment.

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Diagnosis of Compressor Failure by Fault Tree Analysis (FTA기법을 이용한 콤프레서 고장진단)

  • 배용환;이석희;최진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.127-138
    • /
    • 1994
  • The application of fault tree technique to the analysis of compressor failure is considered. The techniques involve the decomposition of the system into a form of fault tree where certain basic events lead to a specified top event which signifies the total failure of the system. In this paper, fault trees are made by using fault train of screw type air compressor failure. The fault trees are used to obtain minimal cut sets from the modes of system failure and, hence the system failure rate for the top event can be calculated. The method of constructing fault trees and the subsequent estimation of reliability of the system is illustrated through compressor failure. It is proved that FTA is efficient to investigate the compressor failure modes and diagnose system.

System Response of Automotive PEMFC with Dynamic Modeling under Load Change (차량용 PEMFC 동적 모델을 이용한 시스템 부하 응답 특성)

  • Han, Jaeyoung;Kim, Sungsoo;Yu, Sangseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The stringent emission regulation and future shortage of fossil fuel motivate the research of alternative powertrain. In this study, a system of proton exchange membrane fuel cell has been modeled to analyze the performance of the fuel cell system for automotive application. The model is composed of the fuel cell stack, air compressor, humidifier, and intercooler, and hydrogen supply which are implemented by using the Matlab/Simulink(R). Fuel cell stack model is empirical model but the water transport model is included so that the system performance can be predicted over various humidity conditions. On the other hand, the model of air compressor is composed of motor, static air compressor, and some manifolds so that the motor dynamics and manifold dynamics can be investigated. Since the model is concentrated on the strategic operation of compressor to reduce the power consumption, other balance of components (BOP) are modeled to be static components. Since the air compressor model is empirical model which is based on curve fitting of experiments, the stack model is validated with the commercial software and the experiments. The dynamics of air compressor is investigated over unit change of system load. The results shows that the power consumption of air compressor is about 12% to 25% of stack gross power and dynamic response should be reduced to optimize the system operation.

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

Numerical Simulation and Experimental Studies on Lubricating System of Scroll Compressor (스크롤 압축기 윤활시스템의 수치해석과 실험)

  • 이진갑;김종봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.108-115
    • /
    • 2004
  • Experiment and analytical studies on the oil supply characteristics of scroll compressor have been presented. For a scroll compressor, oil supply system consisting of individual lubricating element such as pumps, oil passages and sliding surfaces has been modeled by equivalent electric circuit. By solving the closed network equations of the model, oil flow rates at various lubrication elements could be obtained. Total amount of the oil flow rate drawn into the shaft has been measured and compared reasonably well with the prediction by the numerical simulation.

Experimental study on cooling performance characteristics of hybrid refrigeration system in a heavy duty vehicle (상용차 하이브리드 냉방시스템 냉방 성능 특성 연구)

  • Lee, Ho-Seong;Jeon, Hanbyeol;Kim, Jung-Il;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.419-425
    • /
    • 2019
  • The objective of this study was to investigate the cooling performance characteristics of a hybrid refrigeration system in a heavy duty vehicle. The tested hybrid refrigeration system had additionally an electric compressor besides the present mechanical compressor for selective use according to the operating conditions. The applied electric compressor was a scroll type and with 18.0 cc displacement. In order to analyze the performance characteristics of the hybrid refrigeration system with respect to the cooling capacity and Coefficient of Performance (COP), other components, including two different types of compressors, were installed and tested under various operating conditions such as compressor speed and air flow rate of the evaporator. When the electric compressor was operated at 4,500 rev/min, the cooling capacity was about 4.0kW and COP was 3.5. When the mechanical compressor was operated, whereas the cooling capacity was higher than the electric controlled compressor, COP was lower due to the larger displacement and higher power consumption. To analyze the hybrid system operating characteristics due to reasonable cooling capacity with electric compressor operation, the mechanical compressor and electric compressor were operated by turns every 10 minutes under certain system operating conditions. Because surge pressure occurred when both compressors were switched on, the operating strategy required some time to balance the system pressure.

Effects of Vapor Injection on a Compressor in a Transcritical CO2 Cycle (초임계 CO2 사이클에서 가스 인젝션이 압축기 성능에 미치는 영향)

  • Kim, Woo-Young;Shim, Jae-Hwi;Lee, Yong-Ho;Kim, Hyun-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.16-21
    • /
    • 2007
  • Potential advantages of using vapor injection in a two stage rotary compressor for a $CO_2$ heat pump water heater system were addressed in this paper by numerical simulation. Vapor separated from a flash tank in the middle of the expansion process can be used for injection into the second stage suction plenum of the compressor to improve the system performance. Vapor injection increases the intermediate pressure between the two stages, thus increasing the first stage compressor work and reducing that of the second stage. As a whole, however, the compressor input power increases due to injected mass flow rate for the second stage. Computer simulation showed that increment of the cooling capacity by vapor injection exceeded that of the compressor work, thus improving the system performance. COP improvement by vapor injection was calculated to be about 5-14% for normal operating conditions. With vapor injection, a maximum COP was found when the displacement volume of the second stage becomes 90-95% of that of the first stage of the compressor.

A Study on the Performance Analysis of Automotive Air Conditioning System (자동차용 에어컨 시스템의 성능해석에 관한 연구)

  • 이대웅;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.304-314
    • /
    • 2002
  • Performance analysis of the automotive air-conditioning system is conducted by using computer simulation, and performance tests are carried out by using the climate wind tunnel in order to verify simulation. Evaporator and condenser were modeled by using empirical correlation which was obtained from calorimeter data, and compressor was modeled by using map based method. The steady state thermodynamic conditions of refrigerant satisfying mass and energy balance were assumed in the simulation program for automotive airconditioning system. The system performance was analyzed by finite difference method until differential air enthalpy between evaporator inlet and outlet becomes converged. Simulation results are in good agreement with experimental results at most operating conditions. Variation of discharge temperature and pressure of compressor, outlet temperature of evaporator, cooling capacity, and COP were investigated in term of air volume flow rate for evaporator, compressor capacity, compressor speed, superheat of thermostatic expansion valve, and diameter of suction line.