• 제목/요약/키워드: compressive strength.

Search Result 7,825, Processing Time 0.032 seconds

A Study on The Corrosion Resistance of Concrete Containing Copper Slag (동제련 슬래그 혼입 콘크리트의 부식 저항성에 관한 연구)

  • Lee, Dong-Un;Jung, Yoo-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2007
  • The purpose of this study was to analyze steel corrosion resistance of concrete containing copper slag. The specimens were made with normal portland cement and pozzolan materials with various replacement ratio and with W/B ratio ranging from 35% to 55%. Compressive strength, coefficient of chloride diffusion, corrosion area ratio and weight reduction ratio were determinated for the test. The results show that the concrete with pozzolan materials is superior resistant to chloride ions compared to the concrete without pozzolan materials. It was observed that blast furnace slag replacement ratio of 20% gives the best results with respect to chloride ion penetration and corrosion tests and observed that copper slag replacement ratio of 10% gives the seperior resistance compared to normal concrete.

An Experimental Study on the Physical Property of Lime Mortar in the Building' Masonry (조적조 건축물의 석회 모르타르 특성에 관한 실험적 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.133-141
    • /
    • 2009
  • 50 year-old masonry buildings which had been constructed using lime mortar have caused lots of problems because of using different material, cement mortar, when they repair them. Also, there is little information on structural capacities and details of masonry buildings built using lime mortar. In addition, it is difficult to evaluate the structural capacities of the buildings which were often constructed by untrained labors. To preserve the original masonry construction, the study on their construction materials and methodologies has to be carried out. This paper provides basic information for establishing standard details of masonry works using lime mortar in order to overcome these problems when cultural properties are repaired or retrofitted. To do this, compression tests of lime mortar were preformed with the parameters of mixing ratios, mixing material, curing time and curing conditions etc. Based on the test results, the differences between lime mortar and cement mortar were specified and the structural characteristics of lime mortar were also presented in this paper.

Physical Properties of Rigid Polyurethane Foams Prepared by Co-Blowing Agents (Co-blowing agent에 따른 경질 폴리우레탄 폼의 물성 변화 연구)

  • Kim Sang Bum;Koh Sung Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.1-7
    • /
    • 2004
  • The physical properties of rigid polyurethane foam(PUF) synthesized using various types of blowing agents such as water, HFC-365mfc, HFC-245fa, HCFC-l4lb, CFC-11 and n-pentane were studied. The blending effect of blowing agents were also studied. The thermal conductivity, reaction rate, and cell morphology of the PUF with various blending ratio of blowing agents were investigated. The PUF blown by water shows the highest compressive strength among other single blowing agents. The thermal conductivity of PUFs blown by HFC-245fa and HFC-365mfc are close to that of PUFs blown by CFC-11. When HFC-365mfc was mixed with HFC-245fa(30mo1e$\%$) as coblowing agent, the mechanical property shows the highest value among other coblowing agents. It is that the thermal conductivity of PUFs depends on cell size of PUFs as well as thermal conductivity of blowing agent in gaseous form.

  • PDF

The Method of Certificating Waterproof Effect for Consecutive Column-Wall Mass in Underground (주열식 지중연속벽체의 차수효과 확인 방안)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.5-9
    • /
    • 2017
  • On the flow of groundwater, the effect of consecutive column-wall in underground as a hydraulic barrier could be identified by conventional geotechnical methods ((1)visualiy identification of wall mass after underground excavating, (2)uniaxial compressive strength test for core of wall mass in underground, (3)in-situ permeability test in the hole after coring wall mass). However, for the cut off the leakage or infiltration of very high concentrated leachate from the waste landfill or the contaminated groundwater, the waterproof effect of consecutive column-wall in underground should be verified more objectively, by in-situ measuring of pH, temperature and salinity. and by evaluating of their consistency and similarity throughout analyzing the characteristics of basic components and their profiles through the series of chemical experiments. Furthermore, its waterproof effect could be verified additionally throughout deciding the similarity more simply by comparing the general distribution patterns including the difference of high and low peaks from the chromatograms using GC-MS for surrounding groundwater.

Characterization and Preparation of the Hydrogel has Excellent Release Effect of the Active Ingredients Using a Radiation Cross-linking Technology (방사선 가교 기술을 이용한 유효성분 방출력이 우수한 하이드로겔 제조 및 특성 분석)

  • Hwang, Seung-Hyun;Ahn, Sung-Jun;Park, Jong-Seok;Jeong, Sung In;Gwon, Hui-Jeong;Lee, Dong Yun;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.199-207
    • /
    • 2015
  • Typical radiation cross-linked hydrogels has the characteristic that high water content, but low emission efficiency of active ingredients. Therefore, the hydrogel was prepared by the addition to collagen, which is closely related to the formation of skin wrinkles in biocompatibility and highly water-soluble carboxymethyl cellulose sodium salt (CMC) in order to preparation of hydrogels has excellent emission efficiency of active ingredients. Hydrogels were prepared by dissolving CMC and collagen each of 0.5%, 10% concentration in deionized water. Then, prepared hydrogels are performed by gamma-radiation at 1, 3, 5 kGy irradiation dose. The results showed that the gel fraction of after irradiated 3 kGy hydrogel was higher than before irradiated gelation as long as the 55.3%. The swelling rate of irradiated 3 kGy hydrogel was lower than the non-irradiated sample. The compressive strength of 3 kGy irradiated hydrogel was the highest. The visco-elastic did not show any significant differences, even after irradiation. The CMC hydrogel in this study suggested a potential use as a material for the mask pack for improved emission efficiency of the active ingredient and anti-wrinkles.

Preparation and Characterization of Poly(vinyl alcohol) Hydrogel Contain Metronidazole by Irradiation (감마선을 이용한 Metronidazole이 함유된 Poly(vinyl alcohol) 하이드로겔 제조 및 특성)

  • Baik, Jae;Park, Jong-Seok;Jong, Jin-Oh;Jeong, Sung In;Gwon, Hui-Jeong;Ahn, Sung-Jun;Lim, Youn-Mook
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Periodontitis is disease of damaged gum tissue that is not removed the plaque onto teeth. In case that the symptoms of disease get pain worse, it will have to extract tooth because of tumefy or bleeding at gums so treatment of drug was required to periodontitis. In this study, the hydrogel was prepared by including superior viscous, excellent elastic, and biocompatibility of Poly(vinyl alcohol, PVA) and antimicrobial drug of Metronidazole (MD). The 15 wt% PVA was dissolved in deionized water and then prepared PVA solution was irradiated using gamma-ray at 25 kGy ($10kGy\;hr^{-1}$). In addition, PVA hydrogel was immersed in each 0.1, 0.25 and 0.5 wt% MD solution using stirrer for 24 hr. The result of the gelation, 0.5 wt% MD loaded PVA hydrogel(76%) was lower than PVA hydrogel (88.2%). The swelling ration of 0.5 wt% MD loaded PVA hydrogel (294.8%) was higher than PVA hydrogel (105.2%). The compressive strength and thermal properties of MD loaded PVA hydrogel was gradually lower. The drug release test of 0.5 wt% MD loaded PVA hydrogel (61%) was higher than 0.1 wt% MD loaded PVA hydrogel (12%). Therefore, MD loaded PVA hygrogel may be a promising tool for periodontitis medicine by gamma-ray.

Characteristic Evaluation of FA-Based Geopolymer with PLA Fiber (PLA 섬유를 가진 다공성 플라이애시 기반 지오폴리머의 특성 평가)

  • Kwon, Seung-Jun;Hwang, Sang-Hyeon;Cho, Young-Keun;Kim, Tae-Sang;Moon, Eun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Regarding physical absorption mechanism for fine particles(Dust), internal pore-bridging is a major parameter in porous media. In this paper, internal bridging pore system is invented through FA-based geopolymer and incorporated PLA (Polylactic Acid) fiber with biodegradability. With various mix proportions, compressive strength over 20MPa is obtained but PLA is little dissolved in the condition of NaOH 5mole and $30^{\circ}C$ of temperature, which was found that temperature rising accelerates PLA solubility. Within 24hours, beads type PLA is completely dissolved under $90{\sim}130^{\circ}C$ and NaOH 5~12mole of alkali. In room condition, geo-polymerization is limitedly occurs so that the internal pore after PLA dissolution is thought to be effective to absorption and storage of fine particles.

Electrical resistivity and capillarity of self-compacting concrete with incorporation of fly ash and limestone filler

  • Silva, Pedro;de Brito, Jorge
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • Electrical resistivity is a property associated with both the physical and chemical characteristics of concrete. It allows the evaluation of the greater or lesser difficulty with which aggressive substances penetrate the concrete's core before the dissolution of the passive film process and the consequent reinforcement's corrosion begin. This work addresses the capillary absorption of self-compacting concrete (SCC) with various types and contents of additions, correlating it with its electrical resistivity. To that effect, binary and ternary mixes of SCC were produced using fly ashes (FA) and limestone filler (LF). A total of 11 self-compactable mixes were produced: one with cement (C) only; three with C + FA in 30%, 60% and 70% substitution ratios; three with C + LF in 30%, 60% and 70% substitution ratios; four with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% substitution ratios, respectively; and four reference mixes according to the LNEC E 464 specification, which refers to the NP EN 206-1 norm. The evaluation of the capillarity of the mixes produced was made through the determination of the water absorption by capillarity coefficient according to the LNEC E 393 specification. The electrical resistivity was evaluated using the European norm proposal presented by the EU-Project CHLORTEST (EU funded research Project under 5FP GROWTH programme) and based on the RILEM TC-154 EMC technical recommendation. The results indicate that SCC's capillarity is strongly conditioned by the type and quantity of the additions used. It was found that FA addition significantly improves some of the properties studied especially at older ages.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

The Effect of the Self-Healing Microcapsules on the Quality and Healing Properties of Cement Composites (자기치유 마이크로캡슐이 시멘트 복합재료의 품질 및 치유특성에 미치는 영향)

  • Kim, Cheol-Gyu;Oh, Sung-Rok;Kim, Ji-Hun;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.389-396
    • /
    • 2021
  • In this paper, it was evaluated that the effect of self-healing microcapsules on the quality and healing properties of cement composites. In the mixing of microcapsules, the plastic viscosity and yield stress of the cement composites decreased due to the particle properties of the microcapsules, and decreased in proportion to the mixing ratio. The table flow showed a tendency to decrease as the core material acted as a stimulant due to the loss of microcapsules, and the compressive strength could be supplemented through unit quantity correction. As a result of evaluating the effect of microcapsule mixing on the healing properties of cement composites, it was found that the unit water flow rate decreased by the healing reaction immediately after crack initiation. When more than 3% of microcapsules were mixed, it was found that there was a healing rate of more than 95% at 7 days of healing age.