• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.035 seconds

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

A Study on Development of Lightweight Foam Filling Material for the Voids behind Tunnel Liner using Stone-dust and Application to the Old Tunnel (석분을 이용한 터널 뒤채움용 경량기포 충전재의 개발과 현장적용에 대한 연구)

  • Ma, Sang-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.139-147
    • /
    • 2003
  • The most tunnel damage such as cracks or leakage which exist in tunnel lining commonly, is caused by the voids where exist behind the tunnel lining, through the tunnel safety inspections. These voids were analysed to affect to a stability of a running-tunnel seriously. The aim of this paper is to develope the lightweight foam concrete for tunnel backfilling material using stone-dust of cake state and to apply the lightweight foam concrete developed to the old tunnel. This paper shows the basic properties of lightweight foam concrete mixed with stone-dust including flow rate, unit volume weight, absorption rate and compressive strength. In addition, according to the designed compound ratio, the lightweight foam concrete was applied to the ASSM tunnel for an application assessment. The engineering application of the lightweight foam concrete as the old tunnel's backfilling material was confirmed in this assessment.

Similitude Law An Equivalent Three Phase Similitude Law for Pseudodynamic Test on Small-scale Reinforced Concrete Structures (철근콘크리트 구조물의 유사동적실험을 위한 Equivalent Three Phase Similitude LaW)

  • ;;;Guo, Xun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.303-310
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into elastic, weak nonlinear and strong nonlinear phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent three phase similitude law based on seismic damage levels, is developed. In addition, prior to tile experiment, it is verified numerically if tile algorithm is applicable to the pseudodynamic test.

  • PDF

A Study on Similitude Law for Pseudodynamic Tests and Shaking Table Tests on Small-scale R/C Models (철근콘크리트 축소모형의 유사동적실험과 진동대 실험을 위한 상사법칙 연구)

  • Yang, Hui-Gwan;Seo, Ju-Won;Cho, Nam-So;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.545-552
    • /
    • 2006
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not also enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry similitude is not well consistent in their inelastic seismic behaviors. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable to use different materials for small-scale model. In our recent study, a modified similitude law was derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. And quasi-static and pseudo-dynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. In this study, tests on scaled model of different concrete compressive strength aye carried out. In shaking table tests, added mass can not be varied. Thus, constant added mass on expected maximum displacement was applied and the validity was verified in shaking table tests. And shaking table tests on non-artificial mass model is carried out to settle a limitation of acceleration and the validity was verified in shanking table tests.

  • PDF

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

Effects of Changes in Resuscitation Temperature and Curing Method on the Compressive Strength of the Large Volume Mortar of Fly Ash after Application of the Resuscitation Material (소생재 도포 후 소생온도 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.139-140
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of resuscitation after the re-application of mortar with much FA replacement on the degree of resuscitation. Results When NaOH was applied to the top of the mortar where 90% of FA was replaced, and maintained for 24 hours, the degree of resuscitation at $40^{\circ}C$ was completely improved. However, when medium curing was carried out, it showed a higher degree of compression than water or lapping curing at 10 MPa in 28 days. The degree of resuscitation on the 28th day was revived from around 10% of the normal level to about 20~30%, and it was analyzed that it was difficult to achieve the OPC reduction by any method.

  • PDF

Effects of High Temperature Maintenance Time and Curing Method on Compressive Strength of FA Large Volume Replacement Mortar after Application of Resuscitation Material (소생재 도포 후 고온 유지시간 및 양생방법 변화가 Fly Ash 다량치환 모르타르의 압축강도에 미치는 영향)

  • Choi, Yoon-Ho;Lee, Hyuk-Ju;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.141-142
    • /
    • 2019
  • In this study, we conducted a comparative analysis of the effects of retention time and resuscitation method on the degree of resuscitation after reapplying mortar with much FA replacement. Results After applying NaOH to the top surface of 60 % FA-substituted mortar, the degree of resuscitation at $40^{\circ}C$ was high enough to increase the overall curing time, but there was no significant difference. However, with regard to the curing method, middle curing showed the greatest manifestation, followed by wrapping and underwater curing, but there was no significant difference. The resuscitation level on the 28th of the lumber was found to be revived to about 70~80 % at around 30 % without resuscitation.

  • PDF

Analytical study of composite beams with different arrangements of channel shear connectors

  • Fanaie, Nader;Esfahani, Farzaneh Ghalamzan;Soroushnia, Soheil
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.485-501
    • /
    • 2015
  • Channels are implemented in composite beams as shear connectors in two arrangements, face to face and back to back. No relevant explanation is found in the design codes to clarify the preference of the mentioned arrangements. Besides, the designers do not have a common opinion on this subject; i.e., some recommend the face to face and others, back to back status. In this research, channel shear connectors in composite beams are studied analytically for both arrangements using ABAQUS software. For this purpose, they have been modeled in simply supported beams in the arrangements of face to face and back to back; their effects on the crack initiation load of concrete slabs were monitored. The stiffness values of composite beams were also compared in the two arrangements using force-displacement curve; the results are relatively the same in both cases. Furthermore, the effects of compressive strength of concrete, channel size, length and spacing of channels as well as steel type of channels on the performance of composite beams have been investigated. According to the results obtained in this research, the face to face status shows better performance in comparison with that of back to back, considering the load of concrete fracturing.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Investigation of Cement Matrix Compositions of Nanosilica Blended Concrete

  • Kim, Jung Joong;Moon, Jiho;Youm, Kwang-Soo;Lee, Hak-Eun;Lim, Nam-Hyoung
    • International Journal of Railway
    • /
    • v.7 no.3
    • /
    • pp.85-89
    • /
    • 2014
  • The use of pozzolanic materials in concrete mixtures can enhance the mechanical properties and durability of concrete. By reactions with pozzolanic materials and calcium hydroxide in cement matrix, calcium-silicate-hydrate (C-S-H) increases and calcium hydroxide decreases in cement matrix of concrete. Consequently, the volume of solid materials increases. The pozzolanic particles also fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition zone between cement matrix and aggregates; this lowers the permeability and increases the compressive strength of concrete. Moreover, the total contents of alkali in concrete are reduced by replacing cements with pozzolanic materials; this prevents cracks due to alkali-aggregate reaction (AAR). In this study, nanosilica is incorporated in cement pastes. The differences of microstructural compositions between the hydrated cements with and without nanosilica are examined using nanoindentation, XRDA and $^{29}Si$ MAS NMR. The results can be used for a basic research to enhance durability of concrete slab tracks and concrete railway sleepers.