• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.036 seconds

Impact of seawater corrosion and freeze-thaw cycles on the behavior of eccentrically loaded reinforced concrete columns

  • Diao, Bo;Sun, Yang;Ye, Yinghua;Cheng, Shaohong
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Reinforced concrete structures in cold coastal regions are subjected to coupled effects of service load, freeze-thaw cycles and seawater corrosion. This would significantly degrade the performance and therefore shorten the service life of these structures. In the current paper, the mechanical properties of concrete material and the structural behaviour of eccentrically loaded reinforced concrete columns under multiple actions of seawater corrosion, freeze-thaw cycles and persistent load have been studied experimentally. Results show that when exposed to alternating actions of seawater corrosion and freeze-thaw cycles, the compressive strength of concrete decreases with the increased number of freeze-thaw cycles. For reinforced concrete column, if it is only subjected to seawater corrosion and freeze-thaw cycles, the load resistance capacity is found to be reduced by 11.5%. If a more practical service condition of reinforced concrete structures in cold coastal regions is simulated, i.e., the environmental factors are coupled with persistent loading, a rapid drop of 15% - 26.9% in the ultimate capacity of the eccentrically loaded reinforced concrete column is identified. Moreover, it is observed that the increase of eccentric load serves to accelerate the deterioration of column structural behavior.

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.5
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

A study on electrical and thermal properties of conductive concrete

  • Wu, Tehsien;Huang, Ran;Chi, Maochieh;Weng, Tsailung
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Traditional concrete is effectively an insulator in the dry state. However, conductive concrete can attain relatively high conductivity by adding a certain amount of electronically conductive components in the regular concrete matrix. The main purpose of this study is to investigate the electrical and thermal properties of conductive concrete with various graphite contents, specimen dimensions and applied voltages. For this purpose, six different mixtures (the control mixtures and five conductive mixtures with steel fibers of 2% by weight of coarse aggregate and graphite as fine aggregate replacement at the levels of 0%, 5%, 10%, 15% and 20% by weight) were prepared and concrete blocks with two types of dimensions were fabricated. Four test voltage levels, 48 V, 60 V, 110 V, and 220 V, were applied for the electrical and thermal tests. Test results show that the compressive strength of specimens decreases as the amount of graphite increases in concrete. The rising applied voltage decreases electrical resistivity and increases heat of concrete. Meanwhile, higher electrical current and temperature have been obtained in small size specimens than the comparable large size specimens. From the results, it can be concluded that the graphite contents, applied voltage levels, and the specimen dimensions play important roles in electrical and thermal properties of concrete. In addition, the superior electrical and thermal properties have been obtained in the mixture adding 2% steel fibers and 10% graphite.

Durability Properties and Microstructure of Ground Granulated Blast Furnace Slag Cement Concrete

  • Divsholi, Bahador Sabet;Lim, Tze Yang Darren;Teng, Susanto
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • Ground granulated blast-furnace slag (GGBS) is a green construction material used to produce durable concrete. The secondary pozzolanic reactions can result in reduced pore connectivity; therefore, replacing partial amount of Portland cement (PC) with GGBS can significantly reduce the risk of sulfate attack, alkali-silica reactions and chloride penetration. However, it may also reduce the concrete resistance against carbonation. Due to the time consuming process of concrete carbonation, many researchers have used accelerated carbonation test to shorten the experimental time. However, there are always some uncertainties in the accelerated carbonation test results. Most importantly, the moisture content and moisture profile of the concrete before the carbonation test can significantly affect the test results. In this work, more than 200 samples with various water-cementitious material ratios and various replacement percentages of GGBS were cast. The compressive strength, electrical resistivity, chloride permeability and carbonation tests were conducted. The moisture loss and microstructure of concrete were studied. The partial replacement of PC with GGBS produced considerable improvement on various properties of concrete.

An Experimental Study on the Engineering Properties of Deteriorated Concrete using Recycled Fine Aggregate by Fire Damage (재생잔골재를 활용한 화재피해를 입은 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.190-196
    • /
    • 2006
  • In the existed study, a fire outbreak in a reinforced concrete structure looses the organism by the different contraction and expansion of hardened cement pastes and aggregate, and causes cracks by thermal stress, leading to the deterioration of the durability. So accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the Properties of concrete exposed to high temperature are necessary for accurate diagnosis of deterioration. Therefore, This study is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with making variable concrete test specimen, exposing high temperature environment, observing the explosive spalling and examining engineering property.

The Mechanical Properties of Heat-Compressed Radiata Pine (Pinus radiata D.Don) by Compression Set (열압밀화 라디에타 소나무재의 압축세트량에 따른 역학적 특성)

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The mechanical properties of heat-compressed Radiata pine (Pinus radiata D.Don) by compression set were investigated. Heat-compression condition was temperature at $180^{\circ}C$ and press time for 60 minutes. The mechanical properties of heat-compressed wood increased with increasing compression set. Increase of the specific gravity has led to increase in mechanical properties. The maximum compression set of Radiata pine was investigated approximately 65%. It was almost same result with porosity 68% of Radiata pine in specific gravity 0.48.

Behaviour of open beam-to-tubular column angle connections under combined loading conditions

  • Liu, Yanzhi;Malaga-Chuquitaype, Christian;Elghazouli, Ahmed Y.
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.157-185
    • /
    • 2014
  • This paper examines the behaviour of two types of practical open beam-to-tubular column connection details subjected to combined moment, axial and/or shear loads. Detailed continuum finite element models are developed and validated against available experimental results, and extended to deal with flexural, axial and shear load interactions. A numerical investigation is then carried out on the behaviour of selected connections with different stiffness and strength characteristics under various load combination scenarios. The influence of applied levels of axial tensile or compressive loads on the bending stiffness and capacity is examined and discussed. Additionally, the interaction effects between shear forces and co-existing bending and axial loads are examined and shown to be comparatively insignificant in terms of stiffness and capacity in most cases. It is also shown that the range of connections considered in this paper can provide rotational ductility levels in excess of those required under typical design scenarios. Based on these findings, a simplified component-based representation is proposed and described, and its ability to represent the connection response under combined loading is verified using results from detailed numerical simulations.

Early Hydration Properties of BFS by a Change of pH (pH 변화에 따른 고로수쇄 BFS의 초기 수화 특성)

  • Kang, Hyun Ju;Lee, Woong Geol;Song, Myong Shin;Kang, Seung Min;Kim, Kyeng Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.442-447
    • /
    • 2012
  • This study investigated on the early hydration and physical characteristics of BFS by pH variation. NaOH solution was used as a pH activator. In the range from pH 12 to pH 14, Experiment was compared the hydration propertied of OPC(Ordinary Portland Cement) and BFS(Blast Furnace BFS) and BFS containing 2 wt% of gypsum. It was found that CAH(Calcium Aluminate Hydrates) phases and CSH(Calcium Silicate Hydrates) phases were formed during the early hydration of BFS, and that CAH phases, CSH phases and ettringites were formed during the early hydration of BFS containing 2 wt% of gypsum. Furthermore, early hydration of BFS and BFS containing 2 wt% of gypsum were faster then OPC at pH 14, and the 1 day compressive strength of BFS increased by approximately 30% compared to OPC, and BFS containing 2 wt% of gypsum also increased by approximately 40% compared to OPC.

Behavior of L-shaped double-skin composite walls under compression and biaxial bending

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.405-418
    • /
    • 2020
  • The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.

Performance of self-curing concrete as affected by different curing regimes

  • El-Dieb, A.S.;El-Maaddawy, T.A.
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • In this study, polyethylene glycol (PEG) and polyacrylamide (PAM) have been used as self-curing agents to produce self-curing concrete (SC). Compressive strength, ultrasonic pulse velocity (UPV), bulk electrical resistivity, chloride ion penetrability, water permeability, and main microstructural characteristics were examined under different curing regimes, and compared to those of the control concrete mixture with no self-curing agents. One batch of a control mixture and one batch of a SC mixture were air-cured in the lab to act as non-water-cured samples. The water curing regimes for the control mixture included continuous water curing for 3, 7, and 28 days and periodical moist curing using wetted burlap for 3 and 7 days. Curing regimes for the SC mixtures included 3 days of water curing and periodical moist curing for 3 and 7 days. SC mixtures showed better microstructure development and durability performance than those of the air-cured control mixture. A short water curing period of 3 days significantly improved the performance of the SC mixtures similar to that of the control mixture that was water cured for 28 days. SC concrete represents a step towards sustainable construction due to its lower water demand needed for curing and hence can preserve the limited water resources in many parts of the world.