• Title/Summary/Keyword: compressive strength.

Search Result 7,825, Processing Time 0.042 seconds

Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions (공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링)

  • Kim, Yun Yong;Oh, Kwang-Chin;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.415-426
    • /
    • 2015
  • For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.

A Case Study on Field Construction of Cold Weather Mass Concreting Using Double Bubble Sheets and Hydration Heat Difference Method (이중 버블시트 및 수화발열량차 공법에 의한 한중매스콘크리트의 현장적용 연구)

  • Kim Jong;Yoon Jae-Ryung;Jeon Chung-Keun;Shin Dong-An;Oh Seon-Gyo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.15-18
    • /
    • 2006
  • The test result of mat concrete applying both hydration heat difference and insulation curing method on new construction of Cheongju university educational building are summarized as following. Both fresh concrete and compressive strength properties were satisfied In aimed value. Setting time of concrete incorporating 15% of fly ash(FA) retarded 1.2 hour than control concrete. Temperature history of mali concrete indicated that the highest temperature of center was exhibited at $126^{\circ}C$ after 51 hours while the highest temperature of upper section was $10.6^{\circ}C$ after 46 hours. Temperature Difference between center and surface was managed at less than $6^{\circ}C$ during whole curing period. In addition the temperature of upper section secured more than $3.3^{\circ}C$ while the temperature of outside was indicated at less than $-10^{\circ}C$. Maturity by parts of construction secured more than $30^{\circ}C$ DD higher than outside at 3 days. The more number of times, applying insulation curing method by double bubble sheets, increased, the higher economic effect was secured. Overall it was clear that applying both double bubble sheets and hydration heat difference method on this new construction can resist hydration heat crack, early frost demage and strength decrease. It also significantly contributed quality improvement of cold weather concreting

  • PDF

Engineering Properties of Cement Mortar Using Organic Fiber Rehabilitation Materials (유기질 섬유보강재를 사용한 시멘트 모르터의 공학적 특성)

  • Shin Hyun-Sup;Park Yong-Kyu;Kim Kyoung-Min;Lee Gun-Cheol;Hwang In-Sung;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.39-42
    • /
    • 2005
  • This study investigates influence of organic fiber reinforced materials, affecting crack reduction of cement mortar using low grade natural sand(LNS). According to the test, for the properties of fresh mortar, the mortar using natural sand(NS) exhibited that flow value increased until adding most of fiber less than 1$\%$, except for Polyvinly alchol fiber(PVA), and then it decreased. Meanwhile, the mortar mixed with LNS showed that increase of fiber content decrease flow value, regardless of fiber type. Air content increased in the mortar adding nylon fiber(NY) and polypropylene fiber(PP), while it maintained or decreased in the mortar adding cellulose fiber(CL) and PVA. Compressive strength of the mortar does not affect during early age, but mortar using NS and adding 0.1$\%$ of fiber content increased the value, except for PP, at 28 age days, while the mortar mixed with LNS decreased. For the properties of tensile strength, mortar, using NS and adding individually PP and PVA, exhibited higher value. Especially 0.1$\%$ of NY provided the highest value. In addition, the mortar mixed with LNS resulted in improved tensile value as fiber content increased. It is demonstrated that mortar using LNS led to higher length change ratio than natural sand.

  • PDF

The Study of Optimum Lime Content for Ground Improvement of Clayey Soils and Its Effects on Plasticity and Strength Characteristics (점성토 지반 개량을 위한 최적 생석회 첨가량 결정 및 이에 따른 소성 및 강도 특성 분석)

  • Goo, Jeong-Min;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • This study proposed optimum lime contents for clayey soils consisting of representative clay minerals, Kaolinite and Na-Bentonite, according to optimum lime content method (ASTM C 977-22) by means of ground improvement method of clayey soils. As geotechnical properties, the variations of atterberg limits and unconfined compressive strength were analyzed and Ca-ion and micro-structure along elapsed time were observed for lime-added clayey specimens. The test results show that optimum lime content method provides an appropriate methodology for ground improvement of clayey soils and the variation of $Ca^{2+}$ might be a good index to predict the rate of ground improvement for clayey soils with lime addition.

Fabrication of Li2TiO3 Pebbles by Lithium Solution Penetration Method (리튬용액 침투방법에 의한 Li2TiO3 페블 제조)

  • Yu, Min-Woo;Park, Yi-Hyun;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.333-340
    • /
    • 2013
  • To fabricate spherical lithium titanate ($Li_2TiO_3$) pebbles which are used for a breeder material in fusion reactor, titanium oxide ($TiO_2$) granules were used as a starting material. The granules were pre-sintered, and then aqueous lithium nitrate solution infiltrated into the granules at vacuum condition. The granules were crystallized to $Li_2TiO_3$ after sintering under the control of process parameters. In this study, the concentration of lithium in the solution, as well as the number of penetration times and sintering temperature affected the final crystallite phase and the microstructure of the pebbles. In particular, the sphericity and size of the pebbles were effectively controlled by a technical rolling process. The useful spherical $Li_2TiO_3$ pebbles which have 10~20% porosity and 60~120 N compressive strength were obtained through the sintering at $1000{\sim}1100^{\circ}C$ in the multi-times infiltration process with 50 wt% solution. The physical properties of pebbles such as density, porosity and strength, can be controlled by a selection of $TiO_2$ powders and control of processing parameters. It can be thought that the lithium penetration method is a useful method for the fabrication of mass product of spherical $Li_2TiO_3$ pebbles.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.

A Study on the Characteristics of Alluvial Clay in Yangsan-Mulgum (양산-물금 충적점토의 토질특성에 관한 연구)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.102-111
    • /
    • 1997
  • Experiments both in laboratory and field were performed to compare and analyze the characteristics of alluvial clay. The alluvial clay was sampled in test site in which large-scaled tests for the part of the site are under process to suggest the rational method for alluvial clay and the criterion for ground settlement monitoring system. The followings were observed through the experiments : 1. Natural water content, plastic limit, and liquid limit of alluvial clay composed of highly fine grains were 40~80%, 10~20%, and 30~55%, respectively. The values of these properties were relatively small at the ground surface, while the values showed maximum at G.L.- l0m and gradually decreased below the level. 2. Shear strength of alluvial clay was proportionally increased to the depth. Unconfined and triaxial compressive strengths were 0.2~0.6kgf/$cm^2$ and 0.1~0.3kgf/$cm^2$, respectively. 3. Compression index and secondary compression index showed maximum values at G.L.-l0m and gradually decreased below the level. The value of consolidation coefficient was relatively large at the ground surface, constant with decreasing the depth, and incresed when G.L. was below -20m. 4. Piezocone test appeared that alluvial clay with N value of 2~4 was uniformly distributed with 20~ 30m thickness from the ground surface, sand seam was nonuniformly distributed, and penetration pore pressure was 0.8 ~ 1 times of the hydrostatic pressure. Undrained shear strength and consolidation coefficient were 0.04 ~ 0.76kgf / $cm^2$ and $2.88{\times} 10{^-4}~1.3{\times} 10{^-2} cm^2/s$ respectively.

  • PDF

Uniaxial Compression Behavior of Circular RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유시트로 구속된 원형 RC기둥의 일축압축 거동)

  • Han, Sang Hoon;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain curve is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with circular section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio, spiral area ratio, and concrete compressive strength are considered as the test variables. Experiment results indicate that CFS jacketing significantly enhances strength and ductility of concrete. In addition, the CFS-jacketed specimens with the spiral steel show the lower load increasement ratio than those without the spiral steel.

An Experimental Study on the mechanical and Shrinkage Properties of Concrete Using High Fineness Fly ash (고분말도 플라이애쉬를 사용한 콘크리트의 역학 및 수축특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Bae, Pil-Sik;Kim, Sung-Soo;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.725-728
    • /
    • 2008
  • This study was to establish 3 levels of high fineness fly ash like 4000, 6000, and 8000 class and 30% replacement ratio in order to analyze mechanics and shrinkage properties of concrete by using high fineness fly ash. Furthermore, this study was to make a plan in two levels of water-binder ratio like 40% and 50%. In addition, as a result of measurement by the establishment of combined condition of ternary system as 20% replacement ratio level of three sorts of ground granulated blast furnace slag, there was a tendency to be equal or higher to the plain concrete as the fineness of fly ash increased in strength property. Simultaneously, this study had a tendency in the relationship between the compressive strength and elastic modulus that the more the fineness of fly ash, the more the elastic modulus increased a little. In addition, this study had a tendency that the more elastic modulus moved to the long-term aged one, the more it increased definitely. The effect on the fineness of fly ash remained at a low level in the drying shrinkage. This study has shown that the more the fineness increased, the more the elastic modulus decreased.

  • PDF

Effect of the Various Admixtures to Improvement of Concrete Using Over-added Blast Furnace Slag at Early Age (고로슬래그 미분말을 다량 사용한 콘크리트의 초기품질 향상에 미치는 각종 혼합재료의 영향)

  • Lee, Ju-Sun;Pei, Chang-Chun;Ryu, Gum-Sung;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.733-736
    • /
    • 2008
  • This study, with the purpose for early quality improvement of concrete which used large quantity of fly ash, changed various admixture material type and reviewed the basic characteristics. First off, the flow overall was highest when polycarb onic Acid high early strength AE water reducing agent was displaced, while air amount satisfied target level only in the case of plain, and setting time was shown best by getting 30 more minutes than plain and about 3 more hours than conventional when KOH is displaced. Compressive strength was shown best at age 1 day and 3 days when KOH was displaced, and at age 28 days when fine particle cement was displaced. By and large, this study concludes that concrete quality improvement admixture material that used large amount of fly ash showed worse effects than plain, therefore it is determined that there need be more study for development of concrete early quality improvement admixture material that used large amount of fly ash.

  • PDF