• Title/Summary/Keyword: compressive strength level

Search Result 495, Processing Time 0.027 seconds

A Study on Size Effect for Compressive Strength of Concrete considering Strength Level (강도수준에 따른 콘크리트 압축강도의 크기효과에 관한 연구)

  • 김희성;진치섭;어석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.239-244
    • /
    • 1999
  • The reduction phenomena of the compressive strength of concrete with respect to the size of specimens have been extensively investigated. However, adequate analysis technique have not been developed until now. Existing researches have shown that the larger member size, the smaller the strength. This indicated the necessity of nonlinear fracture mechanics theory in order to analyze the fracture behaviors of concrete. The are some models that predict the size effect of compressive strength of cylindrical specimens. Theses equations, however, are developed not considering the difference of fracturing mechanism which depends on both geometry of specimen and the strength level of concrete. In this paper, a model to predict compressive strength of cylindrical concrete specimens with respect to diameters, h/d ratios, and the strength level of concrete, is suggested. For this purpose, theoretical and statistical analyses are conducted. Experimental constants used in the model of new size effect are formulated in terms of strength levels of concrete based on existing experimental data.

  • PDF

An Experimental Study on the Evaluation of Compressive Strength of Recycled Aggregate Concrete by the Core and the Non-Destructive Testing (코어 및 비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가에 대한 실험적 연구)

  • Yang Keun-Hyeok;Kim Yong-Seok;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.133-136
    • /
    • 2005
  • Compressive strength of recycled aggregate concrete was tested by the core and by the non-destructive testing. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results. Also, Test results showed that the ratio of compressive strength by core and non-destructive testing to actual was somewhat affected by the replacement level of recycled aggregate.

  • PDF

Size Effect of Compressive Strength of Concrete for the Cylindrical Specimens Considering Strength Level (강도수준을 고려한 원주형 공시체에 대한 콘크리트 압축강도의 크기효과)

  • Kim, Hee-Sung;Jin, Chi-Sub;Eo, Seok-Hong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.95-103
    • /
    • 1999
  • The reduction phenomena of concrete compressive strength with the size of specimens have been extensively investigated, but till now the adequate analysis technique is not fixed. The existing research results show that the bigger the member size, the smaller the strength. This means the nonlinear fracture mechanics theory is needed in order to analyze the fracture behaviors of concrete and the size effect. There is a few model equations that is to predict the size effect of compressive strength of standard and non-standard cylindrical specimen. However, theses equations did not considered the difference of fracturing mechanism which depends on the strength level. In this paper, model equations to predict compressive strength of concrete considering the size effect and strength level are suggested. The size effect model suggested in this paper shows good prediction compared with the existing test data of various concrete size and strength level.

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Development of A Strength Test Method for Irregular Shaped Concrete Block Paver (이형 콘크리트 블록의 강도 평가방법에 관한 연구)

  • Lin, Wuguang;Park, Dae-Geun;Ryu, SungWoo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-18
    • /
    • 2014
  • PURPOSES : This study aims to develop a strength test method for irregularly shaped concrete block paver. METHODS : Ten (10) different types of concrete block pavers including porous and dense blocks were tested for strength capacities. Destructive and non-destructive methods were used to develop a strength test method for irregularly shaped concrete block paver. The flexural strength evaluation was conducted in accordance to KS F 4419, while compressive strength was conducted with a 45.7mm-diameter core specimen. The impact echo test method was used to evaluate the elastic modulus. Finally, regression analysis was used to investigate the relationship between flexural strength, compressive strength and elastic modulus based on their corresponding test results. RESULTS : The flexural strength of the tested block pavers ranged from 4MPa to 10MPa. At 95% confidence level, the coefficients of determination between compressive-flexural strength relationship and compressive strength-elastic modulus relationship were 0.94 and 0.84, respectively. These coefficients signified high correlation. CONCLUSIONS : Using the test method proposed in this study, it will be easier to evaluate the strength of irregularly shaped concrete block pavers through impact echo test and compressive test, instead of the flexural test. Relative to the flexural strength requirement of 5MPa, the minimum values of compressive strength and elastic modulus, as proposed, are 13.0MPa and 25.0GPa, respectively.

Properties of Cement Paste by the Addition of Liquefied Red Mud (중화 액상화 레드머드의 첨가량에 따른 시멘트 페이스트의 특성)

  • Lee, Hee-Ra;Kang, Hye-Ju;Lee, Yeong-Hun;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.23-24
    • /
    • 2019
  • In this paper, the compressive strength characteristics of cement paste were compared with the addition of liquefied red mud with the addition of nitric acid in order to improve the strength of the deteriorated cement. The results showed that the compressive strength with between 7 days and 28 days was greater than that of liquefied red mud. The ratio of daily compressive strength of the liquefied red mud is higher than that of the Plain with a 1 percent addition rate, and the ratio of compressive strength is lower than that of the Plain on the 28 days. Therefore, the compressive strength of neutralization liquefied red mud compared to liquidated red mud was relatively high, and the compressive strength of the red mud was shown to be improved to a level almost similar to that of Plain.

  • PDF

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

Measurement of Ultrasonic Speed for Evaluating Compressive Strength of Solidified Low & Intermediate-Level Radioactive Wastes (중·저준위 방사성폐기물 고화체의 압축강도 평가를 위한 초음파속도 측정)

  • Moon, Gyoon Young;Lee, Tae Hun;Moon, Yong Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.26-30
    • /
    • 2011
  • In order to ship low & Intermediate level radioactive waste drums, which have been temporarily stored on site, to a disposal facility, their physical and chemical properties should be evaluated and proven to meet the acceptance guideline prior to their shipment. Ultrasonic velocity method, which has been used to estimate the strength of concrete, can be suggested to evaluate the compressive strength of solidified radioactive waste, which is one of the evaluated properties. The strength is estimated from acoustic velocity. However, a guided wave traveling along a drum is generated when applying ultrasonic method to the drum, and this makes it difficult to analyze the signal due to overlap between transmitted wave through the contents in drum and the guided wave. This paper reported feasibility of ultrasonic method to evaluate of the compressive strength of the solidified LLW. It is observed that the guide wave is greater than transmitted wave, and ultrasonic velocity could be estimated from transmitted wave signal arriving prior to the guided wave

An Evaluation of the Compressive Strength of Recycled Aggregate Concrete by the Non-Destructive Testing (비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가)

  • Chung, Heon-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.63-70
    • /
    • 2004
  • The objective of this study is to evaluate the compressive strength of recycled aggregate concrete by the non-destructive testing. Main experimental variables were the replacement level of recycled aggregate and blast-furnace slag, which were divided into two series according to recycled aggregate maximum size. Test results showed that a recycled aggregate had a significant influence on the non-destructive testing results, such as rebound number, Ultrasonic pulse velocity, and frequency. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results.