• 제목/요약/키워드: compressive peak stress

검색결과 158건 처리시간 0.019초

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.

Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression

  • Dinh, Ngoc-Hieu;Choi, Kyoung-Kyu;Kim, Hee-Seung
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.221-236
    • /
    • 2016
  • The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiber-reinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions ($V_f$) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of amorphous metallic fibers in concrete mixture enhances the toughness, strain corresponding to peak stress, and Poisson's ratio at high stress level, while the compressive strength at the 28-th day is less affected and the modulus of elasticity is reduced. Based on the experimental results, prediction equations were proposed for the modulus of elasticity and strain at peak stress as functions of fiber volume fraction and concrete compressive strength. In addition, an analytical model representing the entire stress-strain relationship of AMFRC in compression was proposed and validated with test results for each concrete mix. The comparison showed that the proposed modeling approach can properly simulate the entire stress-strain relationship of AMFRC as well as the primary mechanical properties in compression including the modulus of elasticity and strain at peak stress.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • 제22권6호
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Compressive stress-strain behavior of RFAC after high temperature

  • Liang, Jiongfeng;Wang, Liuhaoxiang;Ling, Zhibin;Li, Wei;Yang, Wenrui
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.9-17
    • /
    • 2022
  • This paper discusses the effect of high temperatures (Ts) on the compressive strength and stress-strain curve of recycled fine aggregate concrete (RFAC), based on the experimental results. A total of 90 prisms (100 mm×100 mm×300 mm) were tested. The results show that the compressive strength and elastic modulus of RFAC specimens decreased significantly with increasing T values. As T increased, the strain corresponding to peak stress decreased first when T<200℃ and then increased afterwards. With increasing T values, the stress-strain curves became flat gradually, the peak stress dropped gradually, and εp decreased when T<200℃ and increased in the T range of 400-800℃. A stress-strain relations for RFAC exposed to high Ts is proposed, which agree quite well with the test results and may be used to practical applications.

An efficient method for the compressive behavior of FRP-confined concrete cylinders

  • Fan, Xinglang;Wu, Zhimin;Wu, Yufei;Zheng, Jianjun
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.499-518
    • /
    • 2013
  • Fiber reinforced polymer (FRP) jackets have been widely used as an effective tool for the strengthening and rehabilitation of concrete structures, especially damaged concrete columns. Therefore, a clear understanding of the compressive behavior of FRP-confined concrete is essential. The objective of this paper is to develop a simple efficient method for predicting the compressive strength, the axial strain at the peak stress, and the stress-strain relationship of FRP-confined concrete. In this method, a compressive strength model is established based on Jefferson's failure surface. With the proposed strength model, the strength of FRP-confined concrete can be estimated more precisely. The axial strain at the peak stress is then evaluated using a damage-based formula. Finally, a modified stress-strain relationship is derived based on Lam and Teng's model. The validity of the proposed compressive strength and strain models and the modified stress-strain relationship is verified with a wide range of experimental results collected from the research literature and obtained from the self-conducted test. It can be concluded that, as a competitive alternative, the proposed method can be used to predict the compressive behavior of FRP-confined concrete with reasonable accuracy.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사 (Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration)

  • 강윤석;임귀환;박병선
    • 한국건설순환자원학회논문집
    • /
    • 제11권4호
    • /
    • pp.381-390
    • /
    • 2023
  • 본 연구에서는 염해를 받은 콘크리트의 역학적 성능 평가를 수행하고, 실험 결과를 바탕으로 염소이온 농도에 따른 압축응력변형률 모델을 제시하였다. 염해를 모사하기 위해 콘크리트 배합 시 CaCl2 용액을 첨가하였으며, 염소이온의 농도는 결합재의 중량 대비 0, 1, 2, 4 %가 되도록 하였다. 콘크리트의 최대 압축응력 이후의 응력-변형률 곡선을 조사하기 위해 변위 제어를 통해 압축강도를 측정하였다. 염소이온 농도가 1 %인 경우에는 최대 압축응력이 증가하였으나, 염소이온 농도가 2 % 이상인 경우에는 최대 압축응력이 감소하였다. 최대 압축응력에서의 변형률의 경우 재령 7일의 시편에서는 염소이온 농도에 따른 경향이 나타나지 않았다. 재령 28일의 시편에서는 염소이온 농도가 증가함에 따라 감소하였다. 재령 28일의 최대 압축응력와 변형률의 변화를 이용하여 Popovics model에 기반한 응력-변형률 곡선 모델을 제시하였다. 염소이온의 농도 증가에 따른 역학적 성능 저하의 원인을 조사하기 위해 수화생성물 분석을 수행하였다. 염소이온의 농도가 증가함에 따라 Friedel's salt가 증가하고, portlandite가 감소하는 것을 확인하였다.

Mechanical behavior of crumb rubber concrete under axial compression

  • Ren, Rui;Liang, Jiong-Feng;Liu, Da-wei;Gao, Jin-he;Chen, Lin
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.249-256
    • /
    • 2020
  • This paper aims at investigating the effect of crumb rubber size and content on compressive behaviors of concrete under axial compression. Concrete specimens are designed and produced by replacing natural aggregate with crumb rubber content of 0%, 5%, 10%, 15% and three different sized crumb rubbers (No. 20, No. 40, No. 80 crumb rubber). And the failure mode, compressive strength, elastic modulus, stress-strain curves, peak strain and ultimate strain are experimentally studied. Based on the test results, formulas have been presented to determine the compressive strength, elastic modulus, the relationship between prism compressive strength and cube compressive strength, stress-strain curves and peak strain of crumb rubber concrete (CRC). It is found that the proposed formulas agree well with the test result on the whole, which may be used to practical applications.

C-축 배향된 ZnO 박막을 이용하여 제작한 압전형 마이크로 스피커의 특성 평가 (Characterization of Piezoelectric Microspeaker Fabricated with C-axis Oriented ZnO Thin Film)

  • 이승환;서경원;유금표;권순용
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.531-537
    • /
    • 2006
  • A micromachined piezoelectric microspeaker was fabricated with a highly c-axis oriented ZnO thin film on a silicon-nitride film having compressive residual stress. When it was measured 3 mm away from the microspeaker in open field, the largest sound pressure level produced by the fabricated microspeaker was about 91 dB at around 2.9 kHz for the applied voltage of $6\;V_{peak-to-peak}$. The key technologies to these successful results were as follows: (1) the usage of a wrinkled diaphragm caused by the high compressive residual stress of silicon-nitride thin film, (2) the usage of the highly c-axis oriented ZnO thin film.