• Title/Summary/Keyword: compressive Young's modulus

Search Result 110, Processing Time 0.024 seconds

The Effect of the Thermal Stress on the Mechanical Behaviour and Permeability of Rocks -1.mechanical Bechviour (열응력이 암석의 역학적 거동과 투수성에 미치는 영향 -I. 역학적 거동)

  • 윤용균;이희근
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Pocheon granite specimens were thermally treated with cycles of predetermined temperatures ranging 2$0^{\circ}C$ to $600^{\circ}C$. Characterization of thermally-induced microcracks were carried out using optical microscopy and their effect on the various physical & mechanical properties were studied. Generally. uniaxial compressive strength, Young's modulus, Poisson's ratio, elastic wave velocity and specific gravity were found to decrease with increasing temperature. From 30$0^{\circ}C$ upwards, negative lateral strains were observed, which resulted in negative Poisson's ratio. Dynamic Young's modulus and Poisson's ratio were found to be generally most sensitive indicators to thermal cracking.

  • PDF

Engineering Characteristics of Cement Milk for Bored Piles (매입말뚝공법의 충전재료로 사용되는 시멘트밀크의 공학적 특성)

  • Do, Jong-Nam;Nam, Moon-Seok;Shim, Jae-Won;Park, Young-Ho;Lee, Seung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.29-43
    • /
    • 2015
  • In this study, engineering property tests were conducted for cement milk used as a filling materials in the bored piles method. For this purpose, various water/cement ratio specimens were produced on the basis of standard specimen specified in highway corporation specifications. The unconfined compressive strength, point load strength, elasticity modulus, poisson's ratio test was performed according to the age. As a test result, injection height for productions of cement milk specimens was defined ratios. Correlation coefficient K of the unconfined compressive strength and point load strength were $K_7=4.55{\sim}13.65$ in age 7 days, and $K_{28}=5.28{\sim}16.84$ in age 28 days. When water / cement ratio is 65-150%, the elastic modulus and Poisson's ratio significantly increased and decreased regardless of age. In addition, the formulae were proposed for unconfined compressive strength, point load strength, a correlation coefficient of unconfined compressive strength, point load strength, elastic modulus, and poisson's ratio for each age.

The Mechanical Properties of the Geochang Granite (거창화강암의 역학적 특성에 관한 연구)

  • Kim, Myeong Kyun
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.24-36
    • /
    • 2015
  • The Geochang granite widely used in construction works is one of the most popular dimension stones in Korea. In order to evaluate the physical properties of rock, a lot of laboratory tests for the Geochang granite were conducted to find unit weight, absorption ratio, P wave velocity, S wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, cohesion, friction angle and point load strength index. The uniaxial compressive strength of the Geochang granite was 19.5 times tensile strength and also 8.6 times cohesion, besides P wave velocity was 1.5 times S wave velocity. Correlation analyses were also conducted to find the correlation among 11 different physical properties, where the uniaxial compressive strength showed Pearson correlation coefficient of more than 0.8 with Poisson's ratio, point load strength index and Young's modulus, respectively. Regression analyses were finally conducted by means of both linear and multiple analysis and the brief results including coefficient of determination of more than 0.7 were presented.

Characteristics of Porous Titanium Fabricated by Space-holder Method using NaCl (NaCl을 Space holder로 이용한 타이타늄 다공체의 특성)

  • Son, Byoung-Hwi;Hong, Jae-Geun;Hyun, Yong-Taek;Kim, Seung-Eon;Bae, Seok-Choun
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.488-495
    • /
    • 2011
  • This study was performed to fabricate the porous titanium foam by space holder method using NaCl powder, and to evaluate the effect of NaCl volume fractions (33.3~66.6 vol.%) on the porosities, compressive strength, Young's modulus and permeability. For controlling pore size, CP titanium and NaCl particles were sieved to different size range of 70~150 ${\mu}m$ and 300~425 ${\mu}m$ respectively. NaCl of green Ti compact was removed in water followed by sintered at $1200^{\circ}C$ for 2 hours. Total porosities of titanium foam were in the range of 38-70%. Pore shape was a regular hexahedron similar that of NaCl shape. Porous Ti body showed that Young's modulus and compressive strength were in the range of 0.6-6 GPa and 8-127 MPa respectively. It showed that pore size and mechanical properties of Ti foams was controllable by NaCl size and volume fractions.

The Study of Changes in Compressive Strength of Trabecular Bone with PMMA Injection in Vertebroplasty (척추성형술에서 PMMA 주입에 의한 망상골의 압축강도 변화 연구)

  • 문희옥;이문규;김정규;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.369-373
    • /
    • 2003
  • The compressed fracture of spine caused by osteoporosis is one of the most frequent diseases in bone fracture. Recently the vertebroplasty has drawn much attention as a medical treatment for the compressed fracture of spine, which strengthens the vertebral body and corrects deformity, and relieves pain in patients by injecting bone cement. But because there were no research about strengthening of mechanical properties of verbral body in bone cement injection, in this study, based on the properties of PMMA, we had measured the Young's modulus for different apparent densities of intact trabecular bone and PMMA injected one from a porcine and a cadaver. Young's modulus to apparent density had a form of a power series in intact trabecular bone and had a linear relation in PMMA injected bone.

Suggested Method for Determining a Complete Set of Micro-Parameters Quantitatively in PFC2D (PFC2D 활용을 위한 정량적 미시변수 결정법)

  • Jong, Yong-Hun;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.334-346
    • /
    • 2006
  • The discrete element code in 2-D, PFC2D, has been used as a tool to simulate various phenomena in rock mechanics and rock engineering. However, the code has an disadvantage that procedure to determine micro-parameters, namely properties of particles and contacts is repetitive and time-consuming. In this study, we analyzed the effect of micro-parameters(for generation of a contact-bonded model) on macro-properties(that were measured numerically by uniaxial compressive test). Based on the analysis, also, the time-saving and reliable method was suggested to determine a complete set of micro-parameters. In order to verify the suggested method, numerical specimens were generated in PFC2D for 10 different rock types at home and abroad. By the two trials for each specimen, in the result, the Young's modulus, Poisson's ratio and uniaxial compressive strength could be reproduced with being in relative error by about 5% to the values obtained by laboratory tests.

A STUDY ON THE STRENGTHS AND DEFORMATION BEHAVIOURS OF ROCKS UNDER VARIOUS LOADING RATES (하중속도가 암석의 강도 및 변형특성에 미치는 영향에 관한 연구)

  • Kang, Moon-Gu;Kim, Jaedong;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.57-67
    • /
    • 1990
  • Uniaxial compression tests are performed under various loading rates to study the influence of loading rate on the compressive strengths and deformation behaviours. The rock samples adopted in this experiments are Onyang granite, Hambaek sandstone, Hambaek shale and Donghae limestone. Total 120 specimens are prepared for this study. As the loading rate increases from static to dynamic state which is about the level of $800{\sim}1,400kgf/cm^2/sec$, the uniaxial compressive strengths are also increased within the range of 40%. And Young's modulus and Poisson's ratio show similar trends but have a little lower rates of increase when compared with that of uniaxial compressive strength.

  • PDF

Mechanical Properties of Energy Efficient Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume

  • Kim, Jeong-Eun;Park, Wan-Shin;Jang, Young-Il;Kim, Sun-Woo;Kim, Sun-Woong;Nam, Yi-Hyun;Kim, Do-Gyeum;Rokugo, Keitetsu
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.97-108
    • /
    • 2016
  • When the energy performance of concrete is substantially higher than that of normal type concrete, such concrete is regarded as energy efficient concrete (WBSCSD 2009). An experimental study was conducted to investigate mechanical properties of energy efficient concrete with binary, ternary and quaternary admixture at different curing ages. Slump test for workability and air content test were performed on fresh concretes. Compressive strength, splitting tensile strength were made on hardened concrete specimens. The mechanical properties of concrete were compared with predicted values by ACI 363R-84 Code, NZS 3101-95 Code, CSA A23.3-94 Code, CEB-FIP Model, EN 1991, EC 2-02, AIJ Code, JSCE Code, and KCI Code. The use of silica fume increased the compressive strengths, splitting tensile strengths, modulus of elasticities and Poisson's ratios. On the other hand, the compressive strength and splitting tensile strength decreased with increasing fly ash.

A Study on Pore Structure and Mechanical Properties of Porous Titanium Fabricated by Three-dimensional Layer Manufacturing Process (3차원적층조형법으로 제조된 타이타늄 금속 다공체의 기공구조 및 기계적 특성에 관한 연구)

  • Son, Byoung-hwi;Hong, Jae-geun;Hyun, Yong-taek;Bae, Seok-choun;Kim, Seung-eon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • This study was performed to fabricate porous titanium foam by three-dimensional layer manufacturing process, and to evaluate the porosities, compressive stress, Young's modulus and fracture pattern. Porous titanium foam was made of CP(Commercial Pure) titanium powder (${\leq}5{\mu}m$). Total porosities of titanium foam were in the range of 55-68%. Pore size distribution was $200-440{\mu}m$ for coarse pores, $50-100{\mu}m$ for intermediate pores and $5-10{\mu}m$ for fine pores. Compression elastic modulus and compression stress were decreased with increasing porosity. Young's modulus ranged from 1.04-5.62 GPa and maximum stress ranged from 20-241 MPa. Regarding the mechanical properties, 3D(Three Demensional) porous titanium fabricated layer manufacturing is a promising material for human bone replacement.

A Study for the Adaptation of Simulation of Uniaxial Compressive Strength Test for Concrete in 3-Dimensional Particle Bonded Model (3차원 입자 결합 모델에서 콘크리트의 일축압축실험 모사 적용성 연구)

  • Lee, Hee-Kwang;Jeon, Seok-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2008
  • In an uniaxial compressive test of a concrete standard specimen (150$\times$300 mm) the crack initiation and extension with the stress increase are the major reason of the failure, which is similar to the breakage of the particle bonding in the simulation by using particle bonded model, especially particle flow code in 3 dimensions (PFC3D) developed by Itasca Consulting Group Inc. That is the main motive to study the possibility of an uniaxial compressive strength test simulation. It is important to investigate the relationship between the micro-parameters and the macro-properties because the 3-dimensional particle bonded model uses the spherical particles to analyze the physical phenomena. Contact bonded model used herein has eight micro-parameters and there are five macro-properties; Young's modulus, Poisson's ratio, uniaxial compressive strength and the crack initiation stress and the ratio concerning the crack propagation with the stress. To simulate the compressive test we made quantitative relationships between the micro-parameters and the macro-properties by using the fractional factorial design and various sensitivity analyses including regression analysis, which result in the good agreement with the previous studies. Also, the stress-stain curve and the crack distribution over the specimen given by PFC3D showed the mechanical behavior of the concrete standard specimen under the uniaxial compression. It is concluded that the particle bonded model can be a good tool for the analyzing the mechanical behavior of concrete under the uniaxial compressive load.