• Title/Summary/Keyword: compression wood

Search Result 132, Processing Time 0.023 seconds

Development of Reinforced Wood Beams Using Polymer Mortar (폴리모 모르터를 이용한 강화목재보의 개발)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.79-86
    • /
    • 1990
  • Based on limited number of tests on reinforced wood beams using polymer mortar in this study, following conclusions were drawn ; 1.Reinforcing compression side of wood beam using polymer mortar was effective in reducing deflection. 2.By increasing thickness of polymer mortar, effective beam stiffness was improved, but energy absorption was reduced. 3.Polymer mortar reinforcement improved compressive strength and reduced strain in compression side of the beam. Therefore, it was possible to change the failure mode from by compression in control beam to by tension in composite beams. 4.The composite beams that have more than 2cm of polymer mortar layer did not perform well because a strain redistribution and separation of meterials at interface were induced in moment span. 5.To maximize the load carrying capacity of composite beam, it is necessary to make polymer mortar and wood behave together without failing at interface. To do this, it is needed to use a polymer mortar which has high strength with such elastic modulus that is closer to elastic modulus of wood. otherwise, it is recommended to use shear connectors at interface to prevent separation of materials under ultimate load.

  • PDF

Mechanical Properties and Density Profile of Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peels

  • Jung-Woo HWANG;Seung-Won OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.98-108
    • /
    • 2023
  • In this study, the boards were manufactured according to the mandarin peels addition rate using sawdust and mandarin orange peel. After that, the mechanical properties and density profile of ceramics prepared by conditions through resin impregnation process and carbonization process were investigated. The bending and compression strengths of ceramics tended to increase as the resin impregnation rate increased. When the resin impregnation rate was 70%, the highest values were 8.58 MPa and 14.77 MPa, respectively. Also, the mechanical properties of ceramics according to carbonization temperature showed the highest values at 1,200℃ for bending strength of 11.09 MPa and compression strength of 17.20 MPa. The bending strength and compression strength according to the mandarin peels addition rate showed the highest values at 8.62 MPa and 14.16 MPa, respectively, when the mandarin orange peel addition rate was 5%. The mechanical properties tended to decrease when the addition rate of mandarin orange was increased. The density profile of ceramics showed a similar tendency to the mechanical properties. It can be seen that the density distribution from the surface layer to the center layer is more uniform as the resin impregnation rate and carbonization temperature increase and the mandarin peels addition rate decreases.

Relationship between Compression Strength Parallel to Grain and Anatomical Characters in Pinus densiflora S. et. Z. (소나무의 해부학적 특성과 종압축강도와의 관계)

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.27-32
    • /
    • 1997
  • This study was carried out to find the relationship between anatomical characters and compression strength parallel to grain of Pinus densiflora S. et. Z., the representative conifer species in Korea. The results were as follows ; 1. The compression strength parallel to grain increased with the increase of tracheid length and wall thickness. The strength, however, decreased with the increase of height of uniseriate ray and microfibril angle. 2. The major factors affecting compression strength parallel to grain in heartwood were radial diameter of latewood tracheid and wall thickness of earlywood tracheid but length and tangential diameter of latewood tracheid were the important factors in sapwood.

  • PDF

Distribution of Hemicelluloses in Warts and the Warty Layer in Normal and Compression Wood Tracheids of Cryptomeria Japonica

  • Kim, Jong-Sik;Awano, Tatsuya;Yoshinaga, Arata;Takabe, Keiji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.420-428
    • /
    • 2011
  • The distribution of arabino-4-O-methylglucuronoxylans (AGXs) and O-acetyl-galactoglucomannans (GGMs) in warts and the warty layer of tracheids in normal wood (NW) and compression wood (CW) of Cryptomeria japonica was investigated. Under field emission scanning electron microscope (FE-SEM) observation, warts and the warty layer of delignified NW and CW tracheids were degraded by xylanase treatment, indicating that warts and the warty layer contain high amounts of AGXs. However, the effect of xylanase was not observed in NW and CW tracheids before delignification, suggesting that AGXs in warts and the warty layer may be encrusted with lignin. After ${\beta}$-mannanase treatment, no noticeable changes were observed in warts and the warty layer of NW tracheids, indicating that warts and the warty layer contain either no or very few GGMs. Similar results to FE-SEM observations were also observed with immunogold labeling. AGX labeling was observed in warts and the warty layer of NW and CW tracheids, while GGM labeling was not detected. NW tracheids showed a much stronger density of AGX labeling than did CW tracheids in warts and the warty layer, indicating differences in the chemical compositions of warts and the warty layer between NW and CW tracheids.

Strength Properties of Steaming Wood after Heat-Compression (수증기처리 열압밀화 목재의 강도적 성질)

  • 김정환;이원희;한규성;변희섭
    • Journal of the Korea Furniture Society
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2000
  • This study was carried out to investigate the effect of steaming on mechanical properties of heat-compressed wood specimens. The specimens for this mechanical strength tests were prepared to super-heated steam treatment after compression to the radial direction of sonamu (Pinus densiflora). The specimen's size is $50(L)mm{\times}20(R)mm{\times}17(T)mm$. Steaming temperature and treatment time is $120^{\circ}C$ and 20, 40, 60, 80, 100 minutes, respectively. Modulus of elasticity(MOE) in compressive test is directly proportional to steaming time. On the other hand, modulus of elasticity in bending test between steaming and not steaming after heat-compressed wood is similar irrespective of steaming time. The reason for this phenomenon is not clear yet.

  • PDF

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

Studies on Variablity of Wood Properties in Stem of Pinus koraiensis(III) -Variations in Tracheid Length and Width, Microfibril Angle and Compression Strength in the Longitudinal Direction- (잣나무 수간내 재질변동에 관한 연구(III) -가도관장.폭, 마이크로피브릴경사각, 압축강도의 수고방향 변동-)

  • 김병로;민두식
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 1999
  • Variations in the wood quality were analyzed to utilize Korean pine (Pinus koraiensis S. et Z.) efficiently and to develop suitable use, depending on the stem location. Variations in the tracheid length and width, microfibril angle, compression strength were measured at the heights of 0.3, 1.3, 2.3, and 5.3m in the longitudinal direction of the 20m pine and they were analyzed by Duncan`s multiple range test. Variations in the tracheid length, width and compression strength did not show significant difference, whereas those in the microfibril angle showed significant difference. However, the microfibril angle did not vary with the height of trees, showing inconsistent pattern in change.

  • PDF

The Mechanical Behavior and the Anatomical Changes of Wood due to Variation of Deflection Rates

  • Kang, Chun Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.7-12
    • /
    • 2005
  • The objective of this study is to estimate the mechanical behavior in bending and the anatomical changes of wood under several deflection rates. Sample specimens of water-saturated Japanese cedar (Cryptomeria japonica) were stressed to rupture under several deflection rates. Mechanical properties of wood such as modulus of elasticity, modulus of rupture and stress at proportional limit, and anatomical changes affected by deflection rates were estimated. Microscopic observations on compression side of the test specimens when the specimen was loaded to rupture were carried out by the SEM (scanning electron microscopy). The results are summarized as follows: 1. The mechanical properties of wood were affected by variations of the deflection rates. The modulus of elasticity (MOE), modulus of rupture (MOR) and stress at proportional limit were in proportion to the logarithm of deflection rates. 2. The deflection of wood at rupture in bending increased as deflection rates decreased. 3. The variations of the microscopic deformations of sample specimens were closely related to the deflection of wood at rupture. In case of largely deflected wood by maximum bending load, severe and abundant microscopic deformations were observed.

The Mechanical Properties of New Zealand-grown Radiata Pine (뉴질랜드산(産) 라디에타 소나무의 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 1996
  • This study was carried out to investigate some mechanical properties for wood rational utilization of heartwood and sapwood in radiata pine according to basic density, ring width and proportion of latewood which were grown in New Zealand. This result were summarized as follow: Heartwood showed 35.78(MPa) of the compression strength parallel to the grain while sapwood showed 42.08(MPa). The modulus of rupture in static bending was higher in sapwood showing 86.12(MPa) than in heartwood 72.99(MPa) Heartwood had 7.38(GPa) for the modulus of elasticity in static bending and sapwood 8.17(GPa). As the basic density and proportion of latewood increased: compression strength parallel to the grain, MOR and MOE in static bending had a tendency to increase. As ring width increased, the mechanical properties decreased.

  • PDF

Physical Properties of Wood Treated with the Essential Oil Penetration (정유 침투처리를 한 목재의 물리적 성질)

  • Chong, Song-Ho;Chun, Su-Kyoung;Park, Byung-Su;Jung, Doo-Jin
    • Journal of the Korea Furniture Society
    • /
    • v.16 no.2 s.30
    • /
    • pp.77-83
    • /
    • 2005
  • The specific gravity of wood treated with the essential oil penetration was higher than that of untreated wood. However, in case of oven-dried wood the difference of treated and untreated products decreased, compared with air-dried wood. The shrinkage of treated wood showed no consistent trend and the difference was trivial. In addition, similar trend was shown in each direction. Compression strength parallel to grain of treated wood was somewhat higher than that of untreated wood and the difference was trivial. The difference in static bending strength was slight and showed no consistent trend. The stage of check for Pinus koraiensis and Populus tomentiglandulosa and Alnus hirsuta was 2 stage and 3 stage, respectively. Deformation stage with no relation to the essential oil treatment was 1 stage for Pinus koraiensis, 2 stage Populus tomentiglandulosa and 3 stage for Ainus hirsuta, respectively, and there was no difference in essential oil penetration.

  • PDF