• Title/Summary/Keyword: compression tests

Search Result 1,573, Processing Time 0.024 seconds

Experimental Study on the Connection between RC Footing and Steel Pile according to Rail loads (철도하중을 고려한 기초구조물과 강관말뚝 연결부 거동에 관한 실험적 연구)

  • Kim, Jung-Sung;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1607-1614
    • /
    • 2011
  • As the connection between spread footing and pile is very important structural connection, it acts as the inter-loading medium to transfer the rail loads applied by superstructure to ground through the body pile of foundation. The experimental study is the method how to reinforce the pile cap between steel pile and footing utilizing perfobond plate with protruding keys. It were experimented on the compression punching tests and bending moment tests against the vertical loading and horizontal loadings acting on head of steel tube pipe. As a result, the tension capacity of the perfobond plate exhibited the superior performance due to the interlocking or dowel effects by the sheared keys of perfobond plate, and there were showing the sufficient strength and ductile capacity against the bending moment of horizontal loading tests. Therefore, it is judged that "the embedded method of perfobond plate in pile cap and footing" which is utilizing the shear connection of perfobond plate with protruding keys has a sufficient structural stability enough to be replaced with the current specification of reinforced method of pile cap with vertically deformed rebar against the vertical compression loads and bending moments that are able to occur in the combination structure of steel pile and the footing foundation.

  • PDF

Compressibility behaviour of peat reinforced with precast stabilized peat columns and FEM analysis

  • Kalantari, Behzad;Rezazade, Reza K.
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.415-426
    • /
    • 2015
  • Researches have been done to discover ways to strengthen peat soil deposits. In this model study, fibrous peat that is the most compressible types of peat has been reinforced with precast peat columns stabilized with ordinary Portland cement and polypropylene fibres. Rowe cell consolidation tests as well as plate load tests (PLTs) were conducted on various types of test samples to evaluate the strength and deformation of untreated peat and peat reinforced by various types of columns. PLTs were conducted in a specially designed and fabricated circular steel test tank. The compression index ($C_c$) and recompression index ($C_r$) of fibrous peat samples reduced considerably upon use of precast columns. Also, PLT results confirmed the results obtained from Rowe cell tests. Use of polypropylene fibres added to cement further decreased ($C_c$) and ($C_r$) and increased load bearing capacity of untreated peat. Finite element method (FEM) using Plaxis 3D was carried out to evaluate the stress distributions along various types of tested samples and also, to compare the deformations obtained from FEM analysis with the actual maximum deformations found from PLTs. FEM results indicate that most of the induced stresses are taken on the upper portion of tested samples and reach their maximum values below the loading plate. Also, a close agreement was found between actual deformation values obtained from PLTs and values resulted from FEM analysis for various types of tested samples.

$C_a/C_c$ for Soft Clay at the Southern Port of Korea by Laboratory Consolidation Tests (실내압밀시험에 의한 남해안지역 연약점토의 $C_a/C_c$ 평가)

  • 김규선;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.70-77
    • /
    • 1999
  • Consolidation settlements on soft clay are often large and potentially damaging to structures. Currently, large-scale projects are in progress in Korea. These structures will be constructed on both thick and soft clay layers, and so the accurate evaluation of magnitude of settlement is required at every step in design and construction. Especially, secondary compression play an important role in consolidation settlements on soft clay. Generally, the magnitudes of secondary compression are evaluated by laboratory and in-situ consolidation tests or by empirical $C_{a/}$ $C_{c}$ relationships. The empirical $C_{a/}$ $C_{c}$ may not be only economical, but a fast and powerful tool in estimating secondary consolidation settlement. However, databases of the $C_{a/}$ $C_{c}$ relationship for sites in Korea are currently insufficient. The purpose of this study is to investigate the relationship of $C_{a/}$ $C_{c}$, on marine clay near the southern sea in Korea. In this study a series of incremental loading consolidation tests (measuring base pore water pressure) are performed. It was found that the $C_{a/}$ $C_{c}$ on undisturbed marine clay equaled 0.0397. This value is similar to the value proposed by Mesri and Castro(1987) for inorganic clay and silt. and silt. and silt.

  • PDF

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Microstructure Evolution of Superalloy Nimonic 80A (초내열합금 Nimonic 80A의 미세조직 변화에 관한 연구)

  • Jeong H. S.;Cho J. R.;Park H. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.174-177
    • /
    • 2004
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range $0.05-5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range 0.05, $5s^{-1}$, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time.

  • PDF

Investigation of the structural performance of a masonry domed mosque by experimental tests and numerical analysis

  • Seker, Burcin S.;Cakir, Ferit;Dogangun, Adem;Uysal, Habib
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.335-350
    • /
    • 2014
  • Historical masonry mosques are the most important structures of Islamic societies. To estimate the static and dynamic behavior of these historical structures, an examination of their restoration studies is very important. In this study, Kara Mustafa Pasha Mosque, which was built as a domed mosque by Kara Mustafa Pasha between 1666-1667 in Amasya, Turkey, has been analyzed. This study investigates the structural behavior and architectural features of the mosque. In order to determine specific mechanical properties, compression and three-point bending tests were conducted on materials, which have similar age and show similar properties as the examined mosque. Additionally, a three-dimensional finite element model of the mosque was developed and the structural responses were investigated through static and dynamic analyses. The results of the analyses were focused on the stresses and displacements. The experimental test results indicate that the construction materials have greatly retained their mechanical properties over the centuries. The obtained maximum compression and tensile stresses from the analyses have been determined as smaller than the materials' strengths. However, the stresses calculated from dynamic analysis might cause structural problems in terms of tensile stresses.

A Case Study on Individually Controlled Pull-out Test for Ground Anchor (지반앵커의 인발시험을 위한 개별제어 긴장장치의 적용 사례 연구)

  • Shin, Hyeon-Cheol;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.545-552
    • /
    • 2008
  • To insure the quality and safety of ground anchors, pull-out test of anchor has to be done. In the individually controlled pull-out test system, pull-out device is used to introduce the same pull-out force to individual tendon that has a different length and a deflection. That is, that device has a separate pull-out oil jack to each tendon, thus the pull-out length of each jack is not the same, but that device introduces each tendon to the same pull-out force. In this study, the in-situ pull-out tests for the compression anchors were performed and its test results were analysed and compared to the results of center hole pull-out tests. In the case of pulling out each tendon using the individually controlled pull-out test device, the pull-out forces were distributed to a individual tendon. That device is excellent one that can solve the cause of unequal pull-out forces of each tendon appearing in the manufacture process and construction of anchors, and unequal pull-out forces due to the deferent length.

  • PDF

대구경 소켓경사반력말뚝의 인발거동에 관한 연구

  • 최용규;김상옥;정창규;정성기;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-284
    • /
    • 2000
  • Using the large diameter (D = 2,500mm, L = 40m) batter steel pipe piles, designed as compression piles but used as reaction piles during the static compression load test of socketed test piles (D = 1,000mm, L = 40m), static pile load tests for large diameter instrumented rock-socketed piles were performed. The reaction steel pipe piles were driven 20m into the marine deposit and weathered rock layer and then l0m socketed with reinforced concrete through the weathered rock layer and into hard rock layer. Steel pipe and concrete in the steel pile part, and concrete and rebars in the socketed parts were instrumented to measure strains in each part. The pullout amounts of reaction pile heads were also measured with LVDT. During the static pile load test, total compressional load of about 20MN was loaded on the head of test piles, but load above 20MN was not loaded due to lack of loading capacity of loading system. Over the course of the study, maximum pullout amount up to 7mm was measured in the heads of reaction piles when loaded op to 10MN and 1mm of pullout amount was measured. More than 85% of pullout load was transfered in the residual weathered rock layer and about 10% in the soft rock layer, which was somewhat different transfer mechanism in the static compressional load tests.

  • PDF

Influence of Stacking Sequence Conditions on the Characteristics of Impact Collapse using CFRP Thin-Wall Structures (CFRP 박육부재의 적층조건이 충격압궤특성에 미치는 영향)

  • Kim, Yeong-Nam;Choe, Hyo-Seok;Cha, Cheon-Seok;Im, Gwang-Hui;Jeong, Jong-An;Yang, In-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2945-2951
    • /
    • 2000
  • Because of the inherent flexibility in their design for improved material properties, composites have wide applications in aerospace vehicles and automobiles. The purpose of this study is to investigate the energy absorption characteristics of CFRP( Carbon Fiber Reinforced Plastics); tubes on static and impact tests. Static compression tests have been carried out using the static testing machine(Shin-gang buckling testing machine)and impact compression tests have been carried out using the vertival crushing testing machine. When such tubes were subjected to crushing loads, the response is complex and depends on the interaction between the different mechanisms that control the crushing process. The collapse characteristics and energy absorption were examined. Trigger and interlaminar number affect energy absorption capability of CFRP tubes.

Developments of double skin composite walls using novel enhanced C-channel connectors

  • Yan, Jia-Bao;Chen, An-Zhen;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.877-889
    • /
    • 2019
  • The developments of double skin composite (DSC) walls with novel enhanced C-channel connectors (DSCW-EC) were reported. Followed axial compression tests on prototype walls were carried to evaluate structural performances of this novel DSC composite structures. The testing program consists of five specimens and focused on the layout of the novel enhanced C-channel (EC) connectors, which include the web direction of C-channels, steel-faceplate thickness, vertical and horizontal spacing of C-channels. Crushing in concrete core and buckling of steel faceplate were two main observed failed modes from the compression tests. However, elastic or plastic buckling of the steel faceplate varies with designed parameters in different specimens. The influences of those investigated parameters on axial compressive behaviors of DSCW-ECs were analyzed and discussed. Recommendations on the layout of novel EC connectors were then given based on these test results and discussions. This paper also developed analytical models for predictions on ultimate compressive resistance of DSCW-ECs. Validation against the reported test results show that the developed theoretical models predict well the ultimate compressive resistance of DSCW-ECs.