• Title/Summary/Keyword: compression fracture

Search Result 589, Processing Time 0.03 seconds

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

Percutaneous Sacroplasty for the Sacral Insufficiency Fracture Caused by Metastasis (척추 전이암에 의한 천추 압박골절의 경피적 천추성형술 -증례보고-)

  • Kwon, Won Il;Han, Kyung Ream;Kim, Chan;Joo, Eun Jin
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.229-232
    • /
    • 2008
  • Insufficiency fractures of the sacrum are relatively common and cause severe low back and buttock pain. Percutaneous vertebroplasty is effective for treating vertebral compression fractures. We present a case of percutaneous sacroplasty for the treatment of low back and buttock pain in a sacral insufficiency fracture. A 79-year-old male with non-small lung cancer presented with severe low back and buttock pain after series of radiation treatments. Preoperative MRI showed both a sacral ala and S2 metastatic insufficiency fracture. An epidural port was inserted for continuous morphine infusion and sacral nerve root blocks were performed. However, his pain did not diminish and we attempted percutaneous sacroplasty. Both sides of the sacroplasty were done with a fluoroscopy-guided technique with 1.7 ml and 2.3 ml of bone cement injected into the right and left sacral ala. Pain relief was significant and the patient was able to sit down 1 day after the procedure.

Fracture Analysis of Porous Titanium for Dental Implant Fabricated by Space Holder Process (Space holder 공정으로 제조된 치과 임플란트용 타이타늄 다공체의 파손 분석)

  • Lee, Seung-Mi;Jang, Jin-Man;Lee, Won-Sik;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze fracture behavior and failure mechanism of porous titanium for dental implant fabricated by space holder process. Method: Three porous titanium specimens with a specific volume fraction of open pore were test by 3 point bending and compression stress condition, respectively. Fracture appearance was observed by scanning electron microscope and discussed in relation with oxygen content. Results: For compression-tested specimens, two specimen showed brittle failure, while the other one showed normal failure after deformation. High oxygen content was detected in the brittle-fractured specimen. Several micro-cracks initiated at the struts propagated down to the bottom of the specimen resulting in normal failure. Conclusion: Oxygen contamination during the fabrication process can leads brittle premature failure, and hence quality problem of the porous titanium for dental implant.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Surface Crack Detection in Compression of Pre Heat-Treated Steel (ESW90) Using an Acoustic Emission Sensor (음향방출센서를 이용한 선조질강(ESW90)의 압축실험에서의 표면 균열 발생 검출)

  • Lee, J.E.;Lee, J.M.;Joo, H.S.;Seo, Y.H.;Kim, J.H.;Kim, S.W.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • In the design of the metal forming processes, various types of ductile fracture criteria are used to predict crack initiation and to fabricate metallic products without any defects. However, the quantitative measurement method for determination of crack initiation is insufficient. It is very difficult to detect crack initiation in ductile metals with excellent deformability because no significant load drop is observed due to crack generation. In this study, the applicability of acoustic emission sensors, which are commonly used in facility diagnostics, to measure crack initiation during the metal forming process was analyzed. Cylindrical notch specimens were designed using the finite element method to induce a premature crack on the surface of pre heat-treated steel (ESW90) material. In addition, specimens with various notch angles and heights were prepared and compression tests were carried out. During the compression tests, acoustic emission signal on the dies and images of the surface of the notch specimen were recorded using an optical camera in real time. The experimental results revealed that the acoustic emission sensor can be used to detect crack initiation in ductile metals due to severe plastic deformation.

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

Early Bone Marrow Edema Pattern of the Osteoporotic Vertebral Compression Fracture : Can Be Predictor of Vertebral Deformity Types and Prognosis?

  • Ahn, Sung Eun;Ryu, Kyung Nam;Park, Ji Seon;Jin, Wook;Park, So Young;Kim, Sung Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.137-142
    • /
    • 2016
  • Objective : To evaluate whether an early bone marrow edema pattern predicts vertebral deformity types and prognosis in osteoporotic vertebral compression fracture (OVCF). Methods : This retrospective study enrolled 64 patients with 75 acute OVCFs who underwent early MRI and followed up MRI. On early MRI, the low SI pattern of OVCF on T1WI were assessed and classified into 3 types (diffuse, globular or patchy, band-like). On followed up MRI, the vertebral deformity types (anterior wedge, biconcave, crush), degree of vertebral body height loss, incidence of vertebral osteonecrosis and spinal stenosis were assessed for each vertebral fracture types. Results : According to the early bone marrow edema pattern on T1WI, 26 vertebrae were type 1, 14 vertebrae were type 2 and 35 vertebrae were type 3. On followed up MRI, the crush-type vertebral deformity was most frequent among the type 1 OVCFs, the biconcave-type vertebral deformity was most frequent among the type 2 OVCFs and the anterior wedge-type vertebral deformity was most frequent among the type 3 OVCFs (p<0.001). In addition, type 1 early bone marrow edema pattern of OVCF on T1WI were associated with higher incidence of severe degree vertebral body height loss, vertebral osteonecrosis and spinal stenosis on the follow up MRI. Conclusion : Early bone marrow edema pattern of OVCF on T1WI, significant correlated with vertebral deformity types on the follow up MRI. The severe degree of vertebral height loss, vertebral osteonecrosis, and spinal stenosis were more frequent in patients with diffuse low SI pattern.

The Analysis of Patterns and Risk Factors of Newly Developed Vertebral Compression Fractures after Percutaneous Vertebroplasty

  • Yoo, Chai Min;Park, Kyung Bum;Hwang, Soo Hyun;Kang, Dong Ho;Jung, Jin Myung;Park, In Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.4
    • /
    • pp.339-345
    • /
    • 2012
  • Objective : The purpose of this study was to investigate the patterns and the risk factors of newly developed vertebral compression fractures (VCFs) after percutaneous vertebroplasty (PVP). Methods : We performed a retrospective review of the 244 patients treated with PVP from September 2006 to February 2011. Among these patients, we selected 49 patients with newly developed VCFs following PVP as the new VCFs group, and the remaining 195 patients as the no VCFs group. The new VCFs group was further divided into 2 groups : an adjacent fractures group and a nonadjacent fractures group. The following data were collected from the groups : age, gender, body weight/height, body mass index (BMI), bone mineral density (BMD) score of the spine and femur, level of initial fracture, restoration rate of anterior/middle vertebral height, and intradiscal cement leakage, volume of polymethylmethacrylate (PMMA). Results : Age, gender, mean body height/weight, mean BMI and volume of PMMA of each of the group are not statistically significantly associated with fractures. In comparison between the new VCFs group and the no VCFs group, lower BMD, intradiscal cement leakage and anterior vertebral height restoration were the significant predictive factors of the fracture. In addition, new VCFs occurrence at the adjacent spines was statistically significant, when the initial fracture levels were confined to the thoracolumbar junction, among the subgroups of new VCFs. Conclusion : Lower spinal BMD, the greater anterior vertebral height restoration rate and intradiscal cement leakage were confirmed as risk factors for newly formed VCFs after PVP.

Analysis of the Fracture Roughness of Crystalline Rock under Multi-stage Stress Conditions (다단계압력 환경하에서의 결정질 암석의 절리면 거칠기 변화 분석)

  • Choi, Junghae;Kim, Heyjin
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.237-249
    • /
    • 2019
  • The roughness changes on a fracture surface were analyzed via a multi-stage compression test under high temperatures to assess how the cracks in a rock mass affect groundwater movement. The analyzed samples consist of coarse granitic rocks from approximately 40 and 270 m depth, and fine granitic rocks from 500 m depth. The compression test was conducted on $20{\times}40{\times}5mm$ samples using a loading system where the pressure increases in 10 MPa increments to 120 MPa. A high-resolution 3D confocal laser scanning microscope (CLSM) was used to observe the surface changes, including the roughness changes, at each pressure step. The roughness change was calculated based on the roughness factor. The experimental results indicate that the roughness of the fracture surface varies with rock type under the stepwise pressure conditions. These data provide a basis for predicting groundwater flow along rock fractures.