• 제목/요약/키워드: compressible gas

검색결과 174건 처리시간 0.034초

디퓨저 확대각이 임계노즐의 임계압력비에 미치는 영향 (The Influence of the Diffuser Divergence Angle on the Critical Pressure of a Critical Nozzle)

  • 김재형;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.131-134
    • /
    • 2002
  • Compressible gas flow through a convergent-divergent nozzle is choked at the nozzle throat under a certain critical pressure ratio, and then being no longer dependent on the pressure change in the downstream flow field. In practical, the flow field at the divergent part of the critical nozzle can affect the effective critical pressure ratio. In order to investigate details of flow field through a critical nozzle, the present study solves the axisymmetric, compressible, Wavier-Stokes equations. The diameter of the nozzle throat is D=8.26mm and the half angle of the diffuser is changed between $2^{\circ}\;and\;10^{\circ}$ Computational results are compared with the previous experimental ones. The results obtained show that the divergence angle is significantly influences the critical pressure ratio and the present computations predict the experimented discharge coefficient and critical pressure ratio with a good accuracy. It is also found that a nozzle with the half angle of $4^{\circ}$ nearly predicts the theoretical critical pressure ratio.

  • PDF

피에조 잉크젯 헤드의 음향파 거동의 수치 해석 (Numerical Simulation of Hydro-Acoustic Flow in Piezo Inkjet Print Head)

  • 이유섭;위상권;오세영;정재우
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.51-61
    • /
    • 2007
  • This paper presents numerical and theoretical studies of acoustic wave interactions in slightly compressible liquids within piezoelectrically driven inkjet print heads. The interconnected flow channels may cause jet crosstalk, resulting in poor printing quality. It should be reduced by modifying the channel structure with the acoustic wave interactions considered. Compressible gas flow driven by the sudden movement of a top wall in the channel is calculated using Flow3D and is validated with the narrow gap theory. Limited compressibility model of the Flow3D is employed to calculate pressure waves of slightly compressible ink flow. It is found that reducing restrictor width can damp out the jet crosstalk by inhibiting the pressure wave propagation. The degree of crosstalk has been quantified using the maximum values of cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed. This finding is verified by drop visualization experiments using silicon-micromachined piezo inkjet print heads that are fabricated by our group.

이중 Orifice를 지나는 압축성 유동에 관한 해석적 연구 (Analytical Study on the Compressure Flow Through a Double Orifice)

  • 김희동;김태호;우선훈
    • 한국추진공학회지
    • /
    • 제1권2호
    • /
    • pp.41-47
    • /
    • 1997
  • 본 연구에서는 이중 orifice를 지나는 압축성 유동을 해석하기 위하여 압축성 유체에 대한 이론계산을 수행하였다. 이중 orifice의 단면적비, orifice 상류의 마하수 및 orifice 사이의 전압손실을 변화시켜, orifice로 인하여 발생하는 축류부에서 유동이 초우크하게 되는 조건을 구하였다. 본 연구의 결과로부터 유동의 초우크 현상은 orifice 단면적비뿐만 아니라 전압손실에도 의존함을 알 수 있다.

  • PDF

임계노즐에서 발생하는 비정상유동에 관한 연구 (Study of the Unsteady Gas Flow in a Critical Nozzle)

  • 김재형;김희동;박경암
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

초음파 유량계를 통하는 기체유동의 CFD 해석 (A CFD Analysis of Gas Flow through an Ultrasonic Meter)

  • 김재형;김희동;이호준;황상윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.998-1003
    • /
    • 2003
  • Ultrasonic flow metering(UFM) technology is being received much attention from a variety of industrial fields to exactly measure the flow rate. The UFM has much advantage over other conventional flow meter systems, since it has no moving parts, and offers good accuracy and reliability without giving any disturbances to measure the flow rate, thereby not causing pressure losses in the flow fields. In the present study, 3-dimensional, unsteady, compressible Navier-Stokes equations are solved by a finite volume scheme, based upon the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral method for time derivatives. In order to simulate multi-path ultrasonic flow meter, an excited pressure signal is applied to three different locations upstream, and the pressure signals are received at three different locations downstream. The mean flow velocities are calculated by the time difference between upstream and downstream propagating pressure signals. The obtained results show that the present CFD method simulates successfully ultrasonic meter gas flow and the mean velocity measured along the chord near the wall is considerably influenced by the boundary layers.

  • PDF

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

가스 연료와 공기 혼합물 내 압력파와 화염의 상호 작용에 의한 연소폭발천이 현상 연구 (Deflagration to detonation transition by interaction between flame and shock wave in gas mixture)

  • 곽민철;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.369-374
    • /
    • 2010
  • 본 연구에서는 가스 연료와 공기 혼합물 내 압력파에 의해 유도되는 화염 가속과 연소폭발천이 현상을 수치적 계산을 통하여 살펴본다. 실험에 기반을 둔 초기 조건 하에서 점성력, 열전단, 몰질량 확산, 그리고 화학 반응을 고려한 reactive compressible Navier-Stokes 방정식을 사용하여 계산을 수행하였다. 반복되는 압력파와 화염의 상호 작용에 의해 발생되는 화염의 Richtmyer-Meshkov (RM) 불안정성에 의해 증가된 화염면을 통하여 생기는 hot spot들에 의한 폭굉의 발생을 모델링하였다. 또한 압력파의 강도 변화에 따른 연소폭발천이 현상의 변화를 살펴보았다.

  • PDF

다상 유동 해석을 위한 압축성 실제기체 해법 (A REAL GAS SOLUTION ALGORITHMS FOR MULTI-PHASE FLOW ANALYSIS)

  • 한상훈;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.187-194
    • /
    • 2005
  • For the analysis of compressible multi-phase and real gas flows, characteristic form of Roe's Riemann solver was derived using real gas equation of state. It was extended to multi component reactive system considering variable specific heat. From this study, it is known that some correction should be made for the use of existing numerical algorithm. 1) Sonic speed and characteristic variable should be corrected with real gas effect. 2) Roe's average was applicable only with the assumption of constant properties. 3) Artificial damping term and characteristic variables should be corrected but their influences may not be significant.

  • PDF

액적을 동반한 기체에서 이차원 충격파 회절 (TWO-DIMENSIONAL SHOCK WAVE DIFFREACTION IN DROPPET-LADEN GAS MEDIA)

  • 염금수;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.362-364
    • /
    • 2010
  • Shock wave interaction with droplet-gas medium is investigated in this paper. In the present computation, the shock wave is initially started in a pure gas and reflected from the wedge to interact with the droplet-ridden gas flows. We used the compressible two-fluid two-phase model that is solved by the two-fluid version of the HLL scheme. The interfacial drag force and heat transfer were included to model the interaction between continuous and dispersed phases. The parametric effect of void fraction on the shock wave reflection in the two-phase media was investigated.

  • PDF