• 제목/요약/키워드: compressibility characteristics

검색결과 170건 처리시간 0.025초

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method

  • Lee, Hyung-Ro;Lee, Seung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.318-330
    • /
    • 2011
  • This paper investigates the convergence characteristics of the modified artificial compressibility method proposed by Turkel. In particular, a focus is mode on the convergence characteristics due to variation of the preconditioning factor (${\alpha}_u$) and the artificial compressibility (${\beta}$) in conjunction with an upwind method. For the investigations, a code using the modified artificial compressibility is developed. The code solves the axisymmetric incompressible Reynolds averaged Navier-Stokes equations. The cell-centered finite volume method is used in conjunction with Roe's approximate Riemann solver for the inviscid flux, and the central difference discretization is used for the viscous flux. Time marching is accomplished by the approximated factorization-alternate direction implicit method. In addition, Menter's k-${\omega}$ shear stress transport turbulence model is adopted for analysis of turbulent flows. Inviscid, laminar, and turbulent flows are solved to investigate the accuracy of solutions and convergence behavior in the modified artificial compressibility method. The possible reason for loss of robustness of the modified artificial compressibility method with ${\alpha}_u$ >1.0 is given.

Computational analysis of compressibility effects on cavity dynamics in high-speed water-entry

  • Chen, Chen;Sun, Tiezhi;Wei, Yingjie;Wang, Cong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.495-509
    • /
    • 2019
  • The objective of this study is to analyze the compressibility effects of multiphase cavitating flow during the water-entry process. For this purpose, the water-entry of a projectile at transonic speed is investigated computationally. A temperature-adjusted Tait equation is used to describe the compressibility effects in water, and air and vapor are treated as ideal gases. First, the computational methodology is validated by comparing the simulation results with the experimental measurements of drag coefficient and the theoretical results of cavity shape. Second, based on the computational methodology, the hydrodynamic characteristics of flow are investigated. After analyzing the cavitating flow in compressible and incompressible fluids, the characteristics under compressible conditions are focused upon. The results show that the compressibility effects play a significant role in the development of cavitation and the pressure inside the cavity. More specifically, the drag coefficient and cavity size tend to be larger in the compressible case than those in the incompressible case. Furthermore, the influence of entry velocities on the hydrodynamic characteristics is investigated to provide an insight into the compressibility effects on cavitating flow. The results show that the drag coefficient and the impact pressure vary with the entry velocity, and the prediction formulas for drag coefficient and impact pressure are established respectively in the present study.

고화준설토의 역학적 특성에 대한 염분의 영향 (Effect of Salinity on Mechanical Characteristics of Stabilized Dredged Soil)

  • 김윤태
    • 한국지반공학회논문집
    • /
    • 제27권9호
    • /
    • pp.47-53
    • /
    • 2011
  • 항로유지 준설과 해안건설 현장에서 채취된 해양준설토는 일반적으로 점토 성분 내에 다량의 염분을 함유하고 있다. 본 논문은 염분이 포함된 고화준설토(S-SDS)와 염분이 포함되지 않은 고화준설토(N-SDS)의 역학적 특성에 대한 염분의 영향을 분석하였다. 이를 위해 염분이 포함된 준설토와 염분이 포함되지 않은 준설토에 각각 동일한 양의 시멘트를 혼합하여 여러 개의 시편을 제작하였다. 7일 혹은 28일 양생된 N-SDS와 S-SDS 시편에 대하여 전자현미경 분석, 일축압축시험 및 구속압축시험을 수행함으로써 고화준설토의 미세 흙구조, 강도 및 압축 특성을 비교 및 분석하였다. 실험결과 점토에 포함된 염분은 고화준설토의 미세 흙구조 형성 뿐만 아니라 고화토의 강도발현에 영향을 주는 것으로 나타났다. 또한 S-SDS의 압축지수와 팽창지수는 N-SDS 보다 크게 나왔다. 이것으로부터 염분은 고화토의 압축성을 증가시킨다는 것을 알 수 있다. 염분은 고결화된 준설토의 강도발현 및 압축성에 악영향을 주었다.

폐타이어 분말을 이용한 혼합경량토의 압축특성 연구 (Compression Characteristics of Waste Tire Powder-Added Lightweight Soil)

  • 강효섭;김윤태
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.774-781
    • /
    • 2009
  • The purpose of this study was to research on compressibility characteristics of waste tire powder-added lightweight soil(TLS) for recycling dredged soil, bottom ash and waste tire. The TLS used in this experiment consists of dredged soil, cement, waste tire powder and bottom ash. Test specimens were prepared with various content of waste tire powder ranged from 0% to 100% at 25% intervals by the dried weight of dredged soil. Several series of one-dimensional consolidation tests were carried out. Based on the experimental results, as the waste tire powder increased, the swelling index of TLS increased. The compression index and swelling index of the TLS with bottom ash content showed lower value than without bottom ash. Then, compressibility characteristics of TLS were strongly influenced by mixing conditions of waste tire powder content and bottom ash content.

  • PDF

편자 고형엘릭실제의 분체 특성에 미치는 부형제의 영향 (Effect of Additives on the Powder Characteristics of Peonja Dry Elixir)

  • 용철순;이종달;김종국;최한곤
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권2호
    • /
    • pp.81-87
    • /
    • 2001
  • The purpose of this study was to investigate the effect of additives on the powder characteristics of peonja dry elixir. Peonja dry elixirs were prepared with various amounts of dextrin using a spray-dryer, and their powder characteristics such as flow, cohesion and compressibility were evaluated as an angle of repose, cohesion index and compressibility index, respectively. Their powder characteristics were not significantly different from one another, indicating that the hydrophilic dextrin, a base of dry elixir hardly affected their powder characteristics. Peonja dry elixirs were prepared with 10% dextrin and various amounts of additives such as mannitol (hydrophilic excipient), sodium lauryl sulfate (surfactant), colloidal silica (hydrophobic excipient) and HPMC (polymer), respectively, and their angle of repose, cohesion index and compressibility index were measured. The powder characteristics of peonja dry elixirs prepared with mannitol were not significantly different from one another, indicating that the mannitol scarcely improved the powder characteristics of peonja dry elixirs. The angle of repose and cohesion index of peonja dry elixirs significantly decreased with increasing amount of sodium lauryl sulfate to 0.3% followed by no significant changes in them. The cohesion index of peonja dry elixir significantly decreased with increasing amount of colloidal silica. The angle of repose and cohesion index of peonja dry elixir significantly decreased with increasing amount of HPMC to 0.3% followed by an abrupt increase in them. However, the compressibility index of peonja dry elixir significantly increased with increasing amount of HPMC to 0.3% followed by an abrupt decrease in them. Our results suggested that a small amount of sodium lauryl sulfate, colloidal silica and HPMC improved markedly the powder characteristics of peonja dry elixirs due to forming stronger and less hygroscopic shell of peonja dry elixirs. Among the peonja dry elixirs studied, the peonja dry elixir prepared with 0.3% sodium lauryl sulfate and 0.3% HPMC had the lowest angle of repose of $27^{\circ}$ and cohesion index of 37.8%, and the highest compressibility index of 38.7%, respectively. Thus, sodium lauryl sulfate and HPMC appear to be promising additives for peonja dry elixir, if used in adequate amounts.

  • PDF

벤토나이트-흙/모래 혼합토의 압축 및 투수 특성 연구 (Compressibility and Permeability Characteristics of Bentonite-Soil/Sand Mixes)

  • 송창섭;윤병옥;반창현
    • 한국농공학회지
    • /
    • 제40권2호
    • /
    • pp.123-129
    • /
    • 1998
  • Compressibility and permeability properties are the most important input parameters necessary to assess the suitability of core materials in seepage control system construction. To achieve this objective, an experimental investigation was conducted in the laboratory. For the bentonite-soil/sand mixes, consolidation and permeability tests were carried out in the conventional consolidation cell, 6Omm in diameter and 2Omm in height, was modified to perform a falling head type permeability test. From the results, the normalized relationship with respect to void ratio at liquid-limit state $(e_L)$, and the changes of compressibility and permeability for various bentonite-soil/sand mixes were presented. This approach will be helpful in proportioning mixes and predicting corresponding changes in engineering behavior. And it is possible to proportion a mix to arrive at the required compressibility without affecting the permeability.

  • PDF

Study on small resistance regions in post-liquefaction shear deformation based on soil's compressive properties

  • Jongkwan Kim;Jin-Tae Han;Mintaek Yoo
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.295-301
    • /
    • 2024
  • Understanding the post-liquefaction shear behavior is crucial for predicting and assessing the damage, such as lateral flow, caused by liquefaction. Most studies have focused on the behavior until liquefaction occurs. In this study, we performed undrained multi-stage tests on clean sand, sand-silt mixtures, and silty soils to investigate post-liquefaction shear strain based on soil compressibility. The results confirmed that it is necessary to consider the soil compressibility and the shape of soil particles to understand the post-liquefaction shear strain characteristics. Based on this, an index reflecting soil compressibility and particle shape was derived, and the results showed a high correlation with post-liquefaction small resistance characteristic regardless of soil type and fine particle content.

Strength and compressibility characteristics of peat stabilized with sand columns

  • Jorat, M. Ehsan;Kreiter, Stefan;Morz, Tobias;Moon, Vicki;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • 제5권6호
    • /
    • pp.575-594
    • /
    • 2013
  • Organic soils exhibit problematic properties such as high compressibility and low shear strength; these properties may cause differential settlement or failure in structures built on such soils. Organic soil removal or stabilization are the most important methods to overcome geotechnical problems related to peat soils' engineering characteristics. This paper presents soil mechanical intervention for stabilization of peat with sand columns and focuses on a comparison between the mechanical characteristics of undisturbed peat and peat stabilized with 20%, 30% and 40% of sand on the laboratory scale. Cylindrical columns were extruded in different diameters through a nearly undisturbed peat sample in the laboratory and filled with sand. By adding sand columns to peat, higher permeability, higher shear strength and a faster consolidation was achieved. The sample with 70% peat and 30% sand displayed the most reliable compressibility properties. This can be attributed to proper drainage provided by sand columns for peat in this specific percentage. It was observed that the granular texture of sand also increased the friction angle of peat. The addition of 30% sand led to the highest shear strength among all mixtures considered. The peat samples with 40% sand were sampled with two and three sand columns and tested in direct shear and consolidation tests to evaluate the influence of the number and geometry of sand columns. Samples with three sand columns showed higher compressibility and shear strength. Following the results of this laboratory study it appears that the introduction of sand columns could be suitable for geotechnical peat stabilization in the field scale.

낙동강 하구지역 부산점토의 퇴적환경에 따른 압축특성 (Compressibility Characteristics Associated with Depositional Environment of Pusan Clay in the Nakdong River Estuary)

  • 정성교;;류춘길;장우영
    • 한국지반공학회논문집
    • /
    • 제22권12호
    • /
    • pp.57-65
    • /
    • 2006
  • 낙동강 하구지역에는 부산점토라고 불리는 연약점토가 두텁게 분포하고 있다. 과거 10년 동안에 대단위 지반개량 사업이 수행되어 왔지만, 주로 시료교란 때문에 압밀침하량과 시간을 아주 과소평가하여 왔었다. 이를 극복하기 위하여 부산점토에 대한 체계적인 지반조사에 의하여 압축특성을 규명할 필요가 요구되었다. 따라서 본 연구에서는 해안지역의 두 현장에서 개선된 시료채취기술을 적용하여 얻어진 시료에 대하여 지질조사, 불교란 및 교란 시료에 대한 압밀실험이 수행되었다. 이 결과를 이용하여 각종 압축정수의 산정과 그들의 상관성을 규명하였으며, 특히 퇴적환경에 따라 물리적 특성, 구조수준, 교란도 및 압축정수의 변화를 분석하였다.