• Title/Summary/Keyword: compressed wood

Search Result 34, Processing Time 0.019 seconds

Characterization of Carbonized MDF by Scanning Electron Microscopy and X-ray diffraction (주사전자현미경 및 X선회절법에 의한 탄화 MDF의 특성)

  • Lee, Seon-Hwa;Park, Sang-Bum;Kwon, Sung-Min;Park, Jong-Young;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.208-215
    • /
    • 2009
  • As a fundamental study to develop absorbing materials on harmful volatile organic compounds (VOC) such as formaldehyde, structural and crystalline characteristics of MDF carbonized at different temperatures were examined by a scanning electron microscope and an X-ray diffraction method. Fibers in surface layer of MDFs showed more compressed morphology than those in middle layer of MDFs, but the porosity of MDFs increased with increasing the carbonized temperature. The wrinkle shape was frequently surfaces of cell walls was more severe than that at the lumina of cells. The shape of pits in the fibers of carbonized MDFs were hardly changed. The cell walls of MDFs carbonized at $400^{\circ}C$ and over showed an amorphous-like structure without cell layering. X-ray diffratograms from the MDFs carbonized at $400^{\circ}C$ showed a trace of crystalline cellulose. On the other hand, an amorphous diffraction pattern from carbons was obtained with the MDFs carbonized at $1,000^{\circ}C$.

A Case Study of a Patient with Penetrating Neck Injuries caused by a Nail Gun (네일 건(Nail Gun) 사고에 의한 경부 관통상 1례)

  • Han, Jong-Soon;Sohn, You-Dong;Ahn, Ji-Yoon;Ahn, Hee-Cheol;Kwon, Hyuk-Sool;Seo, Gang-Yeol;Cho, Kwang-Yun;Park, Seung-Min
    • Journal of Trauma and Injury
    • /
    • v.24 no.1
    • /
    • pp.48-51
    • /
    • 2011
  • Powered by compressed air, a nail gun is an essential alternative tool to a hammer on any construction site. This useful machine launches nails at high speed, automatically embedding them in a piece of wood in only a fraction of a second. In spite of its convenience, life-threatening and fatal nail gun injuries can occur when a nail gun is misused, such as in a suicide attempt, or when the operator has insufficient training because combustion nail guns are capable of firing projectiles at velocities higher than 150 m per second. Although injuries by nail guns are rarely reported, there have been reports of nail gun injuries to the head and the trachea in Korea. In the emergency room, the authors experienced a patient injured by an accidental shooting of a nail gun while working in construction. In that accident, a nail penetrated the patient's cervical vertebra through the left cheek. This report is aimed at studying medical treatment for patients with penetrating injuries caused by nail guns.

The Hazard Assessment of Release and Dispersion of CNG Service Station (CNG 충전소의 누출$\cdot$확산에 대한 위험성 평가)

  • Choi Jong-Woon;Lee Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.53-58
    • /
    • 2000
  • It was carried out consequence analysis(CA) of CNG (compressed natural gas) service station and we compared the results of CA of CNG service station with LPG service station which was installed by high Pressure gas law. The results of CA were that distance of CNG LFL was 1.5 times than the length of LPG LFL. Thermal radiation effect about CNG may not be showed damage of process facilities, but in the case of LPG, it was enough to have an large damage effect on a downtown. The thermal radiation of 37.5 $kw/m^2$ extended 12.6 m. Also, in the case of 12.5 $kw/m^2$ which was able to burn wood, the radiation effect of LPG is 3 times than CNG.

  • PDF

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.