• Title/Summary/Keyword: compressed spectral array

Search Result 7, Processing Time 0.031 seconds

Evaluation of Concentration using Electroencephalogram during Arithmetic Task (뇌파를 이용한 암산작업시의 집중도 평가)

  • 윤용현;고한우;김동윤;한화영
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.53-56
    • /
    • 2000
  • 인간의 집중도 변화를 평가하기 위하여 피험자에게 암산과제를 부가하고 뇌파신호를 전두엽(Fpl, Fp2)으로부터 측정하였다. alpha band의 최대 peak 주파수 변화를 compressed spectral array를 사용하여 관찰하고 theta(3.5-7 Hz), alpha(7.5-13.0 Hz), beta(13.5-20 Hz) band 전력을 정규화하여 분포를 구했다. 평가결과, 집중도가 높아짐에 따라 alpha band의 최대 peak 주파수는 낮은 주파수 대에서 높은 주파수대로 이동하고, slow alpha band의 전력은 감소, fast alpha band의 전력은 증가하였다. 또한 뇌파신호의 각 band 전력의 분포는 theta band는 증가, alpha band는 감소하였다.

  • PDF

A Study on the Real-time Electroencephalography analysis (실시간 뇌파분석에 관한 연구)

  • Song, J.S.;Yoo, S.K.;Kim, S.H.;Kim, N.H.;Kim, K.M.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.278-281
    • /
    • 1995
  • In this paper, we have developed EEG (electroencephalography) analyzer for monitoring the condition of brain in neurological surgery. This system is composed of EEG amplifier. personal-computer and BSP (Digital Signal Processor). By parallel processing of DSP, this system can analysis the power spectral density change of EEG in real-time and display the CSA(Compressed Spectral Array) and CDSA(Color Density Spectral array) of EEG. This system was tested by real EEG and showed the change of EEG.

  • PDF

Clinical Application of Compressed Spectral Array During Deep Hypothermia (초저체온하 대동맥수술 환자에서 완전 순환차단의 안전한 체온 및 기간에 대한 연구 - 뇌파 Compressed Spectral Array의 임상적 응용 -)

  • 장병철;유선국
    • Journal of Chest Surgery
    • /
    • v.30 no.8
    • /
    • pp.752-759
    • /
    • 1997
  • Profound hypothermia protects . cerebral function during total circulatory arrest(TCA) in the surgical treatment of a variety of cardiac and aortic diseases. Despite its importance, there is no ideal technique to monitor the brain injury from ischemia. Since 1994, we have developed compressed spectral array(CSA) of electroencephalography(EEG) and monitored cerebral activity to reduce ischemic injury. The purposes of this study are to analyse the efficacy of CSA and to establish objective criteria to consistently identify the safe level of temperature and arrest time. We studied 6 patients with aortic dissection(AD, n=3) or aortic arch aneurysm(n=3, ruptured in 2). Body temperatures from rectum and esophagus and the EEG were monitored continuously during cooling and rewarming period. TCA with cerebral ischemia was performed in 3 patients and TCA with selective cerebral perfusion was performed in 3 patients. Total ischemic time was 30, 36 and 56 minutes respectively for TCA group and selective perfusion time was 41, 56 and 92 minutes respectively for selective perfusion group. The rectal temperatures for flat EEG were between 16.1 and 22. $1^{\circ}C$ (mean: 18.4 $\pm$ 2.0): the esophageal temperatures between 12.7 and $16.4^{\circ}C$ (mean $14.7\pm1.6).$ The temperatures at which EEG reappeared $5~15.4^{\circ}C$ for esophagus. There was no neurological defic t and no surgical mortality in this series. In summary, the electrical cerebral activity Teappeared within 23 minutes at the temperature less than $16^{\circ}C$ for rectum. It seemed that $15^{\circ}C$ of esophageal temperature was not safe for 20 minutes of TCA and continuous monitoring the EEG with CSA to identify the electrocerebral silence was useful.

  • PDF

Development of an EEG Software for Two-Channel Cerebral Function Monitoring System (2채널 뇌기능 감시 시스템을 위한 뇌파 소프트웨어의 개발)

  • Kim, Dong-Jun;Yu, Seon-Guk;Kim, Seon-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 1999
  • This paper describes an EEG(electroencephalogram) software for two-channel cerebral function monitoring system to detect the cerebral ischemia. In the software, two-channel bipolar analog EEG signals are digitized and from the signals various EEG parameters are extracted and displayed on a monitor in real-time. Digitized EEG signal is transformed by FFT(Fast Fourier transform) and represented as CSA(compressed spectral array) and DSA(density spectral array). Additional 5 parameters, such as alpha ratio, percent delta, spectral edge frequency, total power, and difference in total power, are estimated using the FFT spectra. All of these are effectively merged in a monitor and displayed in real-time. Through animal experiments and clinical trials on men, the software is modified and enhanced. Since the software provides raw EEG, CSA, DSA, simultaneously with additional 5 parameters in a monitor, it is possible to observe patients multilaterally. For easy comparison of patient's status, reference patterns of CSA, DSA can be captured and displayed on top of the monitor. And user can mark events of surgical operation and patient's conditions on the software, this allow him jump to the points of events directly, when reviewing the recorded EEG file afterwards. Other functions, such as forward/backward jump, gain control, file management are equipped and these are operated by simple mouse click. Clinical tests in a university hospital show that the software responds accurately according to the conditions of patients and medical doctors can use the software easily.

  • PDF

Development of a High-Performance Bipolar EEG Amplifier for CSA System (CSA 시스템을 위한 양극 뇌파증폭기의 개발)

  • 유선국;김창현;김선호;김동준
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.205-212
    • /
    • 1999
  • When we want to observe and record a patient's EEG in an operating room, the operation of electrosurgical unit(ESU) causes undesirable artifacts with high frequency and high voltage. These artifacts make the amplifiers of the conventional EEG system saturated and prevent the system from measuring the EEG signal. This paper describes a high-performance bipolar EEG amplifier for a CSA (compressed spectral array ) system with reduced ESU artifacts. The designed EEG amplifier uses a balanced filter to reduce the ESU artifacts, and isolates the power supply and the signal source of the preamplifier from the ground to cut off the current from the ESU to the amplifier ground. To cancel the common mode noise in high frequency, a high CMRR(common mode rejection ratio) diffferential amplifier is used. Since the developed bipolar EEG amplifier shows high gain, low noise, high CMRR, high input impedance, and low thermal drift, it is possible to observe and record more clean EEG signals in spite of ESU operation. Therefore the amplifier may be applicable to a high-fidelity CSA system.

  • PDF

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .