• Title/Summary/Keyword: compound materials

Search Result 1,609, Processing Time 0.027 seconds

Studying the Effect of Cation to the Formation of Iron Oxyhydroxide (양이온 성분이 수산화철 형성에 미치는 영향 조사)

  • Oh, Sei-Jin;Lee, Jae-Yong;Kwon, Soon-Ju;Yoo, Jang-Yong;Choo, Wung-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.796-802
    • /
    • 2002
  • Effect of nine different cations to the formation of iron oxyhydroxide was studied using Mossbauer spectroscopy, XRD and BET. The Redox Potential and pH were measured for the determination of the internal reaction rate, as well. The phases of iron oxyhydroxide could not be the same with each other, due to the present of different cations in solution. Although the oxyhydroxide compound were composed of the same phases, the fraction of each phase was different from each other. The internal reaction rate was varied by the substitution of cation. It could be a cause of the different phase and particle size of oxyhydroxide compound.

Study on Self-extinguishing Epoxy Resin Composition (자기소화성 에폭시 수지 조성물 연구)

  • Kim, Young Chul;Cha, Ok Ja;Kim, Kyung Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.168-173
    • /
    • 2010
  • Flame retardant halogen containing compounds have been replaced as environmentally safe material which does not contain hazardous materials generating toxic gas. Self-extinguishing epoxy resin compositions have been studied in order to produce eco-friendly epoxy molding compound, which is used as insulating materials in semiconductor. We developed self-extinguishing epoxy resin compositions which do not contain halogen compounds with new epoxy resin (E3). The new epoxy molding compound (EMC-1) showed high flame resistance (UL-V0) and high thermal resistance ($451.9^{\circ}C$ at 5 wt% loss) enough to use as eco-friendly material.

Synthesis, Crystal Structure, Spectra Characterization and DFT Studies on a Di-Cycle Pyrazoline Derivative

  • Song, Jie;Zhao, Pu Su;Zhang, Wei Guang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1875-1880
    • /
    • 2010
  • A dicycle pyrazoline derivative, 1-phenyl-5-(p-fluorophenyl)-3,4-($\alpha$-p-fluoro-tolylenecyclohexano) pyrazoline, was synthesized and characterized by elemental analysis, IR, UV-vis, fluorescence spectra and X-ray single crystal diffraction. Density function theory (DFT) calculations were performed by using B3LYP method with 6-$311G^{**}$ basis set. The optimized geometry can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, which suggest that B3LYP/6-$311G^{**}$ method can well predict the IR spectra. Both the experimental electronic absorption spectra and the predicted ones by B3LYP/6-$311G^{**}$ method reveal three electron-transition bands, with the theoretical ones having some red shifts compared with the experimental data. Natural bond orbital analyses indicate that the absorption bands are mainly derived from the contribution of n $\rightarrow\pi^*$ and $\pi\rightarrow\pi^*$ transitions. Fluorescence spectra determination shows that the title compound can emit blue-light at about 478 nm. On the basis of vibrational analysis, the thermodynamic properties of title compound at different temperature have been calculated, revealing the correlations between $C^0_{p,m}$, $S^0_m$, $H^0_m$ and temperature.

Conjugated Oligomers Combining Fluorene and Thiophene Units : Towards Supramolecular Electronics

  • Leclere, Ph.;Surin, M.;Sonar, P.;Grimsdale, A.C.;Mllen, K.;Cavallini, M.;Biscarini, F.;Lazzaroni, R.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.228-228
    • /
    • 2006
  • Conjugated oligomers, used as models for fluorene-thiophene copolymers, are compared in terms of the microscopic morphology of thin deposits and the optical properties. The AFM images and the solid-state absorption and emission spectra are interpreted in line with the structural data, in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long strip-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates. The difference in behavior between the two compounds most probably originates from their different capability of forming densely-packed assemblies of ${\pi-pi}$ interacting molecules. These assemblies are used as active elements in organic field effect transistors designed by using soft lithography technique.

  • PDF

A Volatile Organic Compound Sensor Using Porous Co3O4 Spheres

  • Kim, Tae-Hyung;Yoon, Ji-Wook;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.134-138
    • /
    • 2016
  • Porous $Co_3O_4$ spheres with bimodal pore distribution (size: 2-3 nm and ~ 30 nm) were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Co-acetate and polyethylene glycol (PEG), while dense $Co_3O_4$ secondary particles with monomodal pore distribution (size: 2-3 nm) were prepared from the spray solution without PEG. The formation of mesopores (~ 30 nm) was attributed to the decomposition of PEG. The responses of a porous $Co_3O_4$ sensor to various indoor air pollutants such as 5 ppm $C_2H_5OH$, xylene, toluene, benzene, and HCHO at $200^{\circ}C$ were found to be significantly higher than those of a commercial sensor using $Co_3O_4$ and dense $Co_3O_4$ secondary particles. Enhanced gas response of porous $Co_3O_4$ sensor was attributed to high surface area and the effective diffusion of analyte gas through mesopores (~ 30 nm). Highly sensitive porous $Co_3O_4$ sensor can be used to monitor various indoor air pollutants.

A study on the Joining Properties of Bi-2212 High-Tc Superconducting Tube and Indium Solder (Bi-2212 고온초전도튜브와 인듐솔더의 접합특성연구)

  • Oh, S.Y.;Hyun, O.B.;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2006
  • As a material for SFCL(Superconducting Fault Current Limiter), BSCCO tube with metal stabilizer is a promising candidate, assuring the stability and large power capacity, For the application, the proper soldering technique, which overcome the difficulties of the joining between BSCCO and metal stabilizer, is required. In this study, after soldering In-Bi solder and In-Sn solder with BSCCO superconductor, welding properties between BSCCO and solders were investigated. Because ceramic materials is difficult to weld, Ag electro-plating on BSCCO 2212 is used for intermetallic layer. To find out the best welding condition for superconductor, soldering is tested in the maximum temperature from $155^{\circ}C\;to\;165^{\circ}C$ in the reflow oven. By investigating the composition and thickness of IMC (lntermetallic Compound) created in the reaction of Ag with solder, we analyzed the welding properties of High-Tc superconductor from a micro point of view.

  • PDF

Microstructure and Wear Properties of High Strength Yellow Brass by Addition of Fe, Cr, Mn, Si and Ni (Fe, Cr, Mn, Si, Ni의 첨가에 의한 고력황동의 미세조직과 마모특성)

  • Park, Jae-Yong;Kang, Choon-Sik;Shin, Yun-Ho;Bae, Jeong-Chan
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.258-266
    • /
    • 1997
  • The purpose of this study is to improve hardness and wear resistance of high strength yellow brass by adding Fe, Cr, Mn, Si and Ni. Results showed that NiO, $FeCr_2O_4$ and intermetallic compound $Mn_5Si_3$ were produced when Ni, Fe-Cr and Mn-Si were added to the yellow brass. The hardness and wear tests showed the best results with the presence of the product precipitates and intermetallic compound. The calculation of relative wear resistance by volume fraction of each phases showed that the relative wear resistance of $Mn_5Si_3$ had the highest value, that of ${\beta}$ phase had the lowest. Observation of the worn surface showed that the main wear mechanism were found to be the abrasive wear, and also showed that the wear is caused by mechanical failure at the early stage.

  • PDF

Characterizations of Thermal Compound Using CuO Particles Grown by Wet Oxidation Method (습식 산화법으로 성장된 산화구리입자를 이용한 방열 컴파운드 제조 및 특성 연구)

  • Lee, Dong Woo;Um, Chang Hyun;Chu, Jae Uk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.221-228
    • /
    • 2017
  • Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu ($0.1{\mu}m$ and $7{\mu}m$) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at $75^{\circ}C$. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from $0.1{\mu}m$ Cu particles increased by 192.5 % and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.

Carbonation of Circulating Fluidized Bed Boiler Fly Ash Using Carbonate Liquids

  • Lee, Woong-Geol;Kim, Jin-Eung;Jeon, Se-Hoon;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.380-387
    • /
    • 2017
  • In this study, unstable CaO was converted into a stable Ca compound by using carbonation in a circulating fluidized bed boiler of fly ash to confirm material usability as cement admixture; also undertaken was carbonation test and mortar to examine chemical and physical change by measuring absorption rate and compressive strength. To investigate the chemical properties of circulating fluidized bed boiler fly ash, XRD and TG-DTA were used to determine how the properties of the reaction product change quantitatively during carbonation. In order to stabilize CaO, carbonation of CaO is considered to be the most desirable process. This is because $CaCO_3$, which is a Ca compound, was produced by carbonate reaction of unstable CaO, and decrease of the absorption rate and improvement of the compressive strength were observed when the carbonated fly ash was replaced with cement.

Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions (Ni-Mn 전착층의 기계적 성질에 미치는 공정조건의 영향)

  • Shin, Ji-Wung;Yang, Seung-Gi;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.102-106
    • /
    • 2014
  • Nickel electrodeposition from sulfamate bath has several benefits such as low internal stress, high current density and good ductility. In nickel deposited layers, sulfur induces high temperature embrittlement, as Ni-S compound has a low melting temperature. To overcome high temperature embrittlement problem, adding manganese is one of the good methods. Manganese makes Mn-S compound having a high melting temperature above $1500^{\circ}C$. In this work, the mechanical properties of Ni-Mn deposited layers were investigated by using various process variables such as concentration of Mn$(NH_2SO_3)_2$, current density, and bath temperature. As the Mn content of electrodeposited layers was increased, internal stress and hardness were increased. By increasing current density, internal stress increased, but hardness decreased. With increasing the bath temperature from 55 to $70^{\circ}C$, internal stress of Ni deposit layers decreased, but hardness didn't change by bath temperature. It was likely that eutectoid manganese led to lattice deformation, and the lattice deformation increased hardness and internal stress in Ni-Mn layers. Increasing current density and decreasing bath temperature would increase a mount of $H_2$ absorption, which was a cause for the rise of internal stress.