• Title/Summary/Keyword: compound layer

Search Result 686, Processing Time 0.028 seconds

Combustion of Al-Ni Precursor Al3Ni Foam Manufacture of Composite Structure with Hollow Pipe and Filling of Foam and Investigation of Pore Condition (Al-Ni 전구체의 연소합성 발포에 의한 Al3Ni 폼과 할로우 파이프의 복합구조체 제작 및 폼의 충진성과 기공상태 조사)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.617-622
    • /
    • 2019
  • In order to develop a process for manufacturing a composite structure of an intermetallic compound foam and a hollow material, the firing and pore form of the Al-Ni precursor in a steel pipe are investigated. When the Al-Ni precursor is foamed in a hollow pipe, if the temperature distribution inside the precursor is uneven, the pore shape distribution becomes uneven. In free foaming, no anisotropy is observed in the foaming direction and the pore shape is isotropic. However, in the hollow pipe, the pipe expands in the pipe axis direction and fills the pipe. The interfacial adhesion between $Al_3Ni$ foam and steel pipe is excellent, and interfacial pore and reaction layer are not observed by SEM. In free foaming, the porosity is 90 %, but it decreases to about 80 % in the foam in the pipe. In the pipe foaming, most of the pore shape appears elongated in the pipe direction in the vicinity of the pipe, and this tendency is more remarkable when the inside pipe diameter is small. It can be seen that the pore size of the foam sample in the pipe is larger than that of free foam, because coarse pores remain after solidification of the foam because the shape of the foam is supported by the pipe. The vertical/horizontal length ratio expands along the pipe axis direction by foaming in the pipe, and therefore circularity is reduced.

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

Characterizing Residual Stress of Post-Heat Treated Ti/Al Cladding Materials Using Nanoindentation Test Method (나노압입시험법을 이용한 후열처리된 Ti/Al 클래딩재의 잔류 응력 평가)

  • Sang-Kyu Yoo;Ji-Won Kim;Myung-Hoon Oh;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • Ti and Ti alloys are used in the automobile and aerospace industries due to their high specific strength and excellent corrosion resistance. However their application is limited due to poor formability at room temperature and high unit cost. In order to overcome these issues, dissimilarly jointed materials, such as cladding materials, are widely investigated to utilize them in each industrial field because of an enhanced plasticity and relatively low cost. Among various dissimilar bonding processes, the rolled cladding process is widely used in Ti alloys, but has a disadvantage of low bonding strength. Although this problem can be solved through post-heat treatment, the mechanical properties at the bonded interface are deteriorated due to residual stress generated during post-heat treatment. Therefore, in this study, the microstructure change and residual stress trends at the interfaces of Ti/Al cladding materials were studied with increasing post-heat treatment temperature. As a result, compared to the as-rolled specimens, no difference in microstructure was observed in the specimens after postheat treatment at 300, 400, and 500℃. However, a new intermetallic compound layer was formed between Ti and Al when post-heat treatment was performed at a temperature of 600℃ or higher. Then, it was also confirmed that compressive residual stress with a large deviation was formed in Ti due to the difference in thermal expansion coefficient and modulus of elasticity between Ti Grade II and Al 1050.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

A Study on the Reaction of Al-1% Si with Ti-silicide (Al-1% Si층과 Ti-silicide층의 반응에 관한 연구)

  • Hwang, Yoo-Sang;Paek, Su-Hyon;Song, Young-Sik;Cho, Hyun-Choon;Choi, Jin-Seog;Jung, Jae-Kyoung;Kim, Young-Nam;Sim, Tae-Un;Lee, Jong-Gil;Lee, Sang-In
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.408-416
    • /
    • 1992
  • Stable TiS$i_2$was formed by RTA on single-Si and on poly-Si. Subsequently, an Al-1% Si layer with 600-nm thick was deposited on top of the TiS$i_2$, Finally, the specimens were annealed for 30min at 400-60$0^{\circ}C$in $N_2$ambient. The thermal stability of Al-1% Si/TiS$i_2$bilayer and interfacial reaction were investigated by measuring sheet resistance, Auger electron spectroscopy (AES), and scanning electron microscopy (SEM). The composition and phase of precipitates formed by the reaction of Al-1% Si with Ti-silicide were studied by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD). In the case of single-Si substrate the reaction of Al-1% Si layer with TiS$i_2$layer resulted in precipitates, consuming all TiS$i_2$layer at 55$0^{\circ}C$. On the other hand, the disappearance of TiS$i_2$on poly-Si occurred at 50$0^{\circ}C$ and more precipitates were formed by the reaction of Al-1% Si/TiS$i_2$on potty-Si substrate than those of the reaction on single-Si substrate. This phenomenon resulted from the fact that Ti-silicide formed on poly-Si was more unstable than on single-Si by the effect of grain boundary. By EDS analysis the precipitates were found tobe composed of Ti, Al, and Si. X-ray diffraction showed the phase of precipitates to be theT$i_7$A$l_5$S$i_12$ternary compound.

  • PDF

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

The Characteristics of Runoff from a Forest Watershed with Different Vegetation (식생이 다른 산림유역 유출수의 특성)

  • Lee, Ho-Beom;Park, Chan-Oh;Shin, Dae-Yewn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.311-316
    • /
    • 2007
  • In this study, we investigated the presence of nitrogen, phosphorus, ions, heavy metals and other contaminations in the water stream and soil of the forest watershed with different geology and vegetations for one year from October 2004 to September 2005. Most of the nitrogen oxide in the soil was in the form of $NO_3^-$, and it appeared that nitrogen contents decreased as the soil depth increased. Nitrogen contents was highest in the basalt area showing 13.3 mg/g in the surface soil and 7.40 mg/g in the subsoil. Phosphorous contents showed no significant variations depending on the soil depth and was higher in the intermediate soil layer(60 cm) than in surface soil (30 cm) in granite and metamorphic rock areas. Nitrogenous compound in the soil water was 8.03 mg/L in the granite area of coniferous forest and 14.79 mg/L in the andesite area of the deciduous forest. Nitrogenous compound in the stream water was 5.53 mg/L in October and 6.99 mg/L in January in the granite area of the coniferous forest and $3.61\sim5.11$ mg/L in the andesite area of the deciduous forest. Phosphates in runoff and stream water were similar in coniferous with in deciduous forests, showing a slight increase(0.090$\sim$0.179 mg/L) in the basalt area. In the coniferous forest, pH showed a significant positive correlation with EC, $Ca^{2+}$ and $Cl^-$ at p < 0.01, and showed a negative correlation with S-Fe and S-Al. Electroconductivity showed a significant correlation of 0.601 with $Ca^{2+}$ and of -0.586 with $NO_3^-$ at p<0.01, and showed a significant correlation of 0.301 with $SO_4^{2-}$ and of -0.295 with S-Fe at p < 0.05. In the deciduous forest, pH showed a positive correlation with $Ca^{2+}$ at p < 0.05, and showed a negative correlation with $K^+$, S-Fe and S-Al at p < 0.01. Electroconductivity showed a significant positive correlation with $Ca^{2+}$ and $Cl^-$ at p < 0.05 and with $NO_3^-$ at p < 0.01.

Comparative Study of Interfacial Reaction and Drop Reliability of the Sn-3.0Ag-0.5Cu Solder Joints on Electroless Nickel Autocatalytic Gold (ENAG) (Electroless Nickel Autocatalytic Gold (ENAG) 표면처리와 Sn-Ag-Cu솔더 간 접합부의 계면반응 및 취성파괴 신뢰성 비교 연구)

  • Jun, So-Yeon;Kwon, Sang-Hyun;Lee, Tae-Young;Han, Deog-Gon;Kim, Min-Su;Bang, Jung-Hwan;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.63-71
    • /
    • 2022
  • In this study, the interfacial reaction and drop impact reliability of Sn-Ag-Cu (SAC) solder and electroless nickel autocatalytic gold (ENAG) were studied. In addition, the solder joint properties with the ENAG surface finish was compared with electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). The IMC thickness of SAC/ENAG and SAC/ENEPIG were 1.15 and 1.12 ㎛, respectively, which were similar each other. The IMC thickness of the SAC/ENIG was 2.99 ㎛, which was about two times higher than that of SAC/ENAG. Moreover, it was found that the IMC thickness of the solder joint was affected by the metal turnover (MTO) condition of the electroless Ni(P) plating solution, and it was found that the IMC thickness increased when the MTO increased from 0 to 3. The shear strength of SAC/ENEPIG was the highest, followed by SAC/ENAG and SAC/ENIG. It was found that when the MTO increased, the shear strength was lowered. In terms of brittle fracture, SAC/ENEPIG was the lowest among the three joints, followed by SAC/ENAG and SAC/ENIG. Likewise, it was found that as MTO increased, brittle fracture increased. In the drop impact test, it was confirmed that the 0 MTO condition had a higher average number of failures than the 3 MTO condition, and the average number of failures was also higher in the order of SAC/ENEIG, SAC/ENAG, and SAC/ENIG. As a result of observing the fracture surface after the drop impact, it was found that the fracture was between the IMC and the Ni(P) layer.

Purification and Identification of Apoptosis Modulator Pipernonaline from Piper longum Linn. against Prostate Cancer Cells (필발(Piper longum Linn.)로부터 전립선암 세포사멸물질 pipernonaline의 분리 및 동정)

  • Kim, Kwang-Youn;Kim, Yun-Jin;Lee, Wan;Yu, Sun-Nyoung;Cho, Hyo-Jin;Lee, Sun-Yi;Lee, Han-Seung;Sohn, Jae-Hak;Oh, Hyuncheol;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.671-675
    • /
    • 2009
  • Prostate cancer has been a critical health problem due to an increase of prostate cancer-related deaths worldwide. Also, a frequent treatment option for prostate cancer is androgen ablation, but this treatment has a limited scope, especially for hormone-refractory cancer. There is an urgent need for the identification of alternative therapeutic strategies for prostate cancer. Previously, over one hundred species of dried-plant methanol extracts were tested for inhibitory effects on proliferation. One of them, Piper longum Linn. was selected based on its potent anti-proliferation effect. The dried root of P. longum Linn. was extracted with 100% methanol for 2-3 days and its extract was fractionated using chloroform. The chloroform layer was then subjected to column chromatography on silica gel, reverse phase-18 (RP-18) and Sephadex LH-20, in turn. Finally, the pure compound was obtained and identified as pipernonaline by NMR spectroscopic and physico-chemical analysis. In this study, anti-proliferation and cell cycle arrest effects of pipernonaline on human prostate cancer PC-3 cells were investigated using the MTT and PI staining, respectively. Our findings suggest that pipernonaline represents a dose-dependent growth inhibition pattern on PC-3 cells and, moreover, its growth inhibition is associated with sub-G1 and G0/G1 cell cycle accumulation in PC-3 cells. Also, these results provide an anticancer candidate for human prostate cancer.