• Title/Summary/Keyword: composting process

Search Result 213, Processing Time 0.032 seconds

The Effect of Application Levels of Slurry Composting and Bio-filtration Liquid Fertilizer on Soil Chemical Properties and Growth of Radish and Corn (총각무와 옥수수 재배시 SCB액비 시용수준이 토양화학성과 생육에 미치는 영향)

  • Kang, Seong-Soo;Kim, Min-Kyeong;Kwon, Soon-Ik;Kim, Myong-Suk;Yoon, Sung-Won;Ha, Sang-Gun;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1306-1313
    • /
    • 2011
  • A liquid fertilizer treated with slurry composting and biofiltration (SCB) process has been applied increasingly on agricultural field but the effects on the soil properties and crop production has not been throughly evaluated. This study was conducted to investigate the effect of the SCB application on soil chemical properties and the growth of radish and corn. SCB liquid fertilizer as a basal fertilization was treated with five levels based on $6kg\;10a^{-1}$ for radish and $10kg\;10a^{-1}$ for corn. The experimental design was the completely randomized block design with five levels and three replicates. Electrical conductivity (EC), $NO_3$-N, Exch. K and Exch. Na increased depending on the treatment levels of SCB. There were no changes in soil organic matter, Avail. $P_2O_5$, Exch. Ca and Exch. Mg. EC, $NO_3$-N and Exch. Na content decreased as precipitation increased. Especially, they decreased up to the initial condition before the treatment after the heavy rainy season in 2008. Although Exch. K decreased at the rainy season, they remained relatively higher content after the experiment on August, 2008. Fresh weight and the amount of N uptake of radish increased due to the levels of SCB, but corn did not present any significant increase. It is recommended that we need to decide the proper amount of SCB as well as the application method on the field to increase the productivity and decrease environmental stress. Additional experiments also need to clarify the effect of the trace element and heavy metal accumulations due to long term application of SCB.

A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem (미세플라스틱의 환경노출을 최소화하기 위한 하·폐수 슬러지 관리방안)

  • An, Junyeong;Lee, Byung Kwon;Jeon, Byong-Hun;Ji, Min-Kyu
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Due to the negative impacts of microplastics (MPs) on the ecosystem, the investigation of its occurrence and its treatment from sewage and wastewater treatment plants (WWTPs) have received a lot of attention in the recent years. Most MPs are precipitated and removed with the sludge during the treatment process. Proper sludge management is immensely necessary to avoid MP exposure in the environment. However, the domestic research on this aspect is limited. This study reviews appropriate sludge management approaches to decrease environmental MP exposure. This can be achieved through investigating sludge generation and treatment, regulation laws and government policy trends with an emphasis on WWTPs. The ratio of sludge in sewage treatment plants has been observed to be highest in recycling followed by incineration and landfills. Recycling is the highest in fuel followed by construction materials and composting. For WWTPs, the highest ratio is in recycling followed by fuel and landfills, and recycling is confirmed in the following order: incineration > after composting > after solidification > earthworm breeding. Treatment approaches that can increase the exposure of MPs to the ecosystem are considered to be used in landfills and agricultural fields. However, this method is not appropriate given the insufficient capacity of domestic landfills and the sufficient supply of existing chemical and animal manure fertilizers. Instead, it would be rational in terms of environmental preservation to expand the use of fuel and energy in connection with the new and renewable energy policy, and to actively seek the use of sub-materials for construction materials. In order to secure the basic data for the effectiveness of future planning and revision of related laws, it is required to perform an in-depth investigation of the sludge supply and demand status along with the environmental and economic effects.

Studies on nutrient sources, fermentation and harmful organisms of the synthetic compost affecting yield of Agaricus bisporus (Lange) Sing (양송이 수량(收量)에 미치는 합성퇴비배지(合成堆肥培地)의 영양원(營養源), 발효(醱酵) 및 유해생물(有害生物)에 관((關)한 연구(硏究))

  • Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.7 no.1
    • /
    • pp.13-73
    • /
    • 1979
  • These studies were conducted to investigate nutrient sources and supplementary materials of synthetic compost media for Agaricus bisporus culture. Investigation were carried out to establish the optimum composition for compost of Agaricus bisporus methods of out-door fermentation and peakheating with rice straw as the main substrate of the media. The incidence and flora of harmful organisms in rice straw compost and their control were also studied. 1. When rice straw was used as the main substrate in synthetic compost as a carbon source. yields were remarkably high. Fermentation was more rapid than that of barley straw or wheat straw, and the total nitrogen content was high in rice straw compost. 2. Since the morphological and physico-chemical nature of Japonica and Indica types of rice straw are greatly dissimilar. there were apparent differences in the process of compost fermentation. Fermentation of Indica type straw proceeded more rapidly with a shortening the compost period, reducing the water supply, and required adding of supplementary materials for producing stable physical conditions. 3. Use of barley straw compost resulted in a smaller crop compared with rice straw. but when a 50%, barley straw and 50% rice straw mixture was used, the yield was almost the same as that using only rice straw. 4. There were extremely high positive correlations between yield of Agaricus bisporus and the total nitrogen, organic nitrogen, amino acids, amides and amino sugar nitrogen content of compost. The mycerial growth and fruit body formation were severely inhibited by ammonium nitrogen. 5. When rice straw was used as the main substrate for compost media, urea was the most suitable source of nitrogen. Poor results were obtained with calcium cyanamide and ammonium sulfate. When urea was applied three separate times, nitrogen loss during composting was decreased and the total nitrogen content of compost was increased. 6. The supplementation of organic nutrient activated compost fermentation and increased yield of Agaricus bisporus. The best sources of organic nutrients were: perilla meal, sesame meal, wheat bran and poultry manure, etc. 7. Soybean meal, tobacco powder and glutamic acid fermentation by-products which were industrial wastes, could be substituted for perilla meal, sesame meal and wheat bran as organic nutrient sources for compost media. B. When gypsum and zeolite were added to rice straw. physical deterioration of compost due to excess moisture and caramelization was observed. The Indica type of straw was more remarkable in increase of yield of Agricus bisporus by addition of supplementing materials than Japonica straw. 9. For preparing rice straw compost, the best mixture was prepared by 10% poultry manure, 5% perilla meal, 1. 2 to 1. 5% urea and 1% gypsum. At spring cropping, it was good to add rice bran to accelerate heat generation of the compost heap. 10. There was significantly high positive correlation (r=0.97) between accumulated temperature and the decomposition degree of compost during outdoor composting. The yield was highest at accumulated temperatures between 900 and $1,000^{\circ}C$. 11. Prolonging the composting period brought about an increase in decomposition degree and total nitrogen content, but a decrease in ammonium nitrogen. In the spring the suitable period of composting was 20 to 25 days. and about 15 days in autumn. For those periods, the degree of decomposition was 19 to 24%. 12. Compactness of wet compost at filling caused an increase in the residual ammonium nitrogen. methane and organic acid during peak heating. There was negative correlation between methane content and yield (r=0.76)and the same was true between volatile organic acid and yield (r=0.73). 13. In compost with a moisture content range between 69 to 80% at filling. the higher the moisture content, the lower the yield (r=0.78). This result was attributed to a reduction in the porosity of compost at filling the beds. The optimum porosity for good fermentation was between 41 and 53%. 14. Peak heating of the compost was essential for the prevention of harmful microorganisms and insect pests. and for the removal of excess ammonia. It was necessary to continue fer mentatiion for four days after peak heating. 15. Ten species of fungi which are harmful or competitive to Agaricus bisporus were identified from the rice compost, including Diehliomyces microsporus, Trichoderma sp. and Stysanus stemoites. The frequency of occurrance was notably high with serious damage to Agaricus bisporus. 16. Diehliomyces microsporus could be controlled by temperature adjustment of the growing room and by fumigating the compost and the house with Basamid and Vapam. Trichoderma was prevented by the use of Bavistin and Benomyl. 17. Four species of nematodes and five species of mites occured in compost during out-door composting. These orgnanisms could be controlled through peakheating compost for 6 hours at $60^{\circ}C$.

  • PDF

Estimation of Nitrogen Mineralization of Organic Amendments Affected by Nitrogen Content in Upland Soil Conditions (밭토양 조건에서 질소함량별 유기자원의 질소 무기화율 추정)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.262-268
    • /
    • 2019
  • BACKGROUND: To investigate mineralization characteristics of organic resources in the soil, five materials (rice straw, cow manure sawdust compost, microorganism compost, mixed oil-cake, and amino acid fertilizer) were treated according to the nitrogen content, and an indoor incubation experiment was conducted for 128 days. The results of this analysis were applied to determine the nitrogen mineralization pattern of these organic resources. METHODS AND RESULTS: During the constant temperature incubation period, the nitrogen net mineralization rate of the organic resources was the highest in the amino acid fertilizer with the highest nitrogen content, and the lowest in the rice straw with the lowest nitrogen content. A positive correlation (0.96) was observed between the potential nitrogen mineralization rate and total nitrogen content. The mineralization rate constant, k, was negatively correlated with the organic matter (-0.96) and carbon content (-0.97). The nitrogen mineralization rate during the first cropping season, as estimated by the model, was 6.6%, 11.6%, 30.9%, 70.7%, and 81.0% for the rice straw, the cow manure sawdust compost, the microorganism compost, the mixed oil-cake, and the amino acid fertilizer, respectively. CONCLUSION: The nitrogen mineralization rate varies depending on the type of organic resources or the nitrogen content; thus, it can be used as an index for determining the nitrogen supply characteristics of the organic resource. Organic resources such as compost with low nitrogen content or those undergoing fermentation contain organic nitrogen. Organic nitrogen is stabilized during the composting process. Therefore, as the nitrogen mineralization rate of these resources is lower than that of non-fermented organic resources, it is desirable to use the fermented organic materials only to improve soil physical properties rather than to supply nutrients for the required amount of fertilizer.

Comparison and Analysis on Characteristics for recycling of Multifarious Food Waste (음식물쓰레기의 자원화를 위한 배출업종별 성상 및 특성의 비교분석)

  • Joo, Hung-Soo;Ryu, Jae-Young;Phae, Chae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.117-124
    • /
    • 2001
  • This study was executed for utilizing it as basic data in appropriate recycling way and design by examining and analyzing various characteristics of food waste which is being discharged from various restaurant and apartment house. In general, there were differences in restaurants classification and Japanese restaurant showed big differences as compared to other restaurants. Vegetable had the highest composition and its contents had big difference according to seasons. In alien substances, oyster shells were the highest and restaurants showed high rate of alien substances than apartments, therefore it was required to divide them in advance. Salinity was the highest in Japanese restaurants and most restaurants had rate of up to 1%, so it was not appropriate for recycling. However, it was considered that if there is cleaning operation in the whole process, there might not be a problem. Feed Ingredient had 28% of fiber, 25% of protein, and 11% of fats. We analyzed noxious germs and heavy metal too. However microorganisms of etiological cause were not detected and each harmful material showed less values of control concentration. In the result of analysis of each characteristic, it is required to consider collection rate from restaurants and apartments and seasonal cause into design regarding recycling. And apartments are compatible to compost than feed and food waste from Chinese, flour restaurant and collective feeding facilities are compatible for feed, as it is evaluated.

  • PDF

Minimizing Nutrient Loading from SCB Treated Paddy Rice Fields through Water Management (SCB 액비 시용 논에서 물관리를 통한 양분의 수계 부하 최소화 방안)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Jung, Goo-Bok;Hong, Seung-Chang;Chae, Mi-Jin;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.671-675
    • /
    • 2012
  • This study was conducted to establish the BMPs (Best Management Practices) for preventing pollutant loadings from paddy rice field applied livestock liquid manure from 2008 through 2011. Cultivated paddy rice fields (Gyeonggi province, Korea) were treated with SCB (Slurry composting and bio-filtration process) liquid fertilizer. The BMPs for paddy rice field developed in this study includes: 1) the controlling a drainage water gate in paddy rice field from right after SCB liquid fertilizer application to 3 weeks after rice transplanting; 2) livestock liquid fertilizer application to paddy rice soils in 20 days before rice transplanting to encourage the utilization of liquid fertilizer; 3) preservation of surface water depth to 5 cm in a paddy field right after SCB liquid fertilizer applied to minimize a water pollution and enhance the utilization of liquid fertilizer; and 4) blocking a water gate at least for 2 days to inactivate E. coli survival. The findings of this study will provide useful and practical guideline to applicators of agricultural soil in deciding appropriate handling and time frames for preventing pollution of water quality for sustainable agriculture.

Disposal Possibility of Raw Food Wastes Using Earthworm, Eisenia andrei (지렁이를 이용한 생 음식물쓰레기 체리 가능성)

  • Na Young Eun;Nam Hong Shik;Han Min Su;Bang Hae Sun;So Kyu Ho;Bae Yun Hwan;Ahn Yong Joon
    • The Korean Journal of Soil Zoology
    • /
    • v.8 no.1_2
    • /
    • pp.13-16
    • /
    • 2003
  • Disposal possibility of raw food wastes which have various characters without any washing and composting process was tested directly using the earthworm, Eisenia andrei. The amount of feeding treatment a day by the earthworm was investigated according to input amount of 1.5 kg/m$^2$ or 3.0 kg/m$^2$ of fifteen food wastes with the different pH and EC. Earthworm disposed an average of 0.87 kg/m$^2$/day of food wastes at the constant temperature of 15$^{\circ}C$ and 1.01 kg/m$^2$/day at 2$0^{\circ}C$. The most disposal among fifteen food wastes was the food waste with pH 5.3 and EC 17.7 as 1.59 kg/m$^2$/day at 15$^{\circ}C$ and as 1.63 kg/m$^2$/day at 2$0^{\circ}C$. The least disposal was the food waste with pH 3.9 and EC 17.7 as 0.31 kg/m$^2$/day at 15$^{\circ}C$ and as 0.53 kg/m$^2$/day at 2$0^{\circ}C$. It took an average 4 days to dispose the amount of 3 kg raw food wastes at 15$^{\circ}C$ and 3.3 days at 2$0^{\circ}C$.

  • PDF

Monitoring of Soil Chemical Properties and Pond Water Quality in Golf Courses after Application of SCB Liquid Fertilizer (골프코스에서 SCB저농도액비 살포에 따른 토양화학성과 연못수질의 모니터링)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • As SCB liquid fertilizer (SCB) produced from or out of livestock manure by slurry composting and biofiltration process was applied in golf course, the effect on soil properties and water quality was little investigated. This study was conducted to evaluate the effect of the SCB liquid fertilizer application on environment by monitoring chemical property of soil and water quality of pond as applied chemical fertilizer (CF) and SCB. SCB application rarely contaminated the soil and pond in golf course and decreased organic matter, CEC and Ca in soil and pH and T-N for water quality of pond. In correlation coefficient between soil property parameters, water quality parameters and water quality items, SCB applied in golf course decreased organic matter and CEC in soil and increased SAR in water quality (P<0.01). Nitrogen applied in golf course with SCB or CF was significantly related to T-N in the soil (P<0.01), but not significantly related to T-N in the pond water. These results showed that SCB application little contaminated soil and pond in golf course, and was expected to control of thatch in soil and algae in pond.

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

Chemical Treatment of Leachate from Swine Manure Composting System (양돈분뇨 퇴비화공정에서 발생하는 침출액의 화학적처리)

  • 정태영;오인환;김동수
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.145-152
    • /
    • 2002
  • This experiment was conducted to investigate the efficiency and compatibility of the coagulation and settling processes of leachates from the compost of two swine farms. And results obtained are as follows : 1 In the farm A where $COD_{Cr}$, $COD_{Mn}$ and $BOD_5$ of original leachate were 4,400, 2,950 and 87mg/l, respectively, the rate of coagulation and settling process was more efficient in the leachate treated with the conjugate of Alum and cation polymer than that of Alum and anion polymer. The concentrations of BOD$_{5}$, T-N and T-P of the effluent after treatment with the conjugate of Alum and cation polymer under the optimum condition were 19, 257.5 and 0.4mg/l, respectively which are under the governmental regulation level. 2. In the farm B where $COD_{Cr}$, $COD_{Mn}$ and $BOD_5$ of original leachate were 4,720, 3,040 and 95mg/l, respectively, the conjugate of $FeCl_3$, 1,500mg/l and cation polymer 10mg/l ($FeCl_3$+FO4240) was most effective coagulation and settling agent compared with the others. The concentrations of BOD$_{5}$, T-N and T-P of the effluent after treatment with $FeCl_3$+FO4240 were 15.3, 829.4 and 2.8mg/l, respectively. And the concentration of T-N was higher than the governmental regulation level, presumably because of too high concentration of NH$_4$$^{+}$-N in the leachate.

  • PDF