• 제목/요약/키워드: composting process

검색결과 213건 처리시간 0.025초

화학적처리 양돈폐수 잉여오니와 톱밥 혼합물 퇴비화 및 퇴비탈취처리 (Composting Chemical Treated Hog Wastewater Excess Sludge Amended with Sawdust and Compost Biofiltration)

  • 홍지형;박금주
    • 한국축산시설환경학회지
    • /
    • 제12권1호
    • /
    • pp.29-34
    • /
    • 2006
  • The effects of turning frequency were examined on the efficiency of composting lime treated excess sludge amended with sawdust from the activated sludge process after a liquid/solids separation process. The raw and excess sludge from the activated sludge process associated with the hog wastewater treatment system is a significant problem and composting is an effective method far reducing the pollution potential of hog wastewater sludge. The coagulant used sludge composting and ammonia emissions from composting are not well established. The effect of compost properties such as high total carbon, C/N ratio and pH value on performance of composting sludge and biofiltration of ammonia from composting process were investigated. The ammonia emission was not significantly increased during composting. The ammonia concentrations of the exhaust air of composter were ranged from 0.5 and 7 ppm about 12 days after composting. The performance of the hog wastewater sludge composting was the most sensitive to chemical treated sludge properties such as high total carbon and high C/N ratio of the initial compost mixes. Temperature in compost and ammonia emission were not greatly affected by the turning frequency.

  • PDF

초고온 호기성 퇴비화 공정을 이용한 음식물쓰레기 처리 특성 평가 (Estimation of Characteristics Treatment for Food Waste using Ultra Thermophilic Aerobic Composting Process)

  • 박세용;오두영;정철진;장은석;송형운
    • 한국폐기물자원순환학회지
    • /
    • 제34권2호
    • /
    • pp.140-147
    • /
    • 2017
  • This study was conducted to evaluate the effects of physical characteristics. Twelve specific odorous compounds and various sources of bacteria were tested via treatment of food waste using an ultra-thermophilic aerobic composting process. Food waste was mixed with seed material and operated for 47 days. During composting, the temperature was maintained at $80-90^{\circ}C$. The variations in $O_2$, $CO_2$ and $NH_3$ production suggested typical microorganism-driven organic decomposition patterns. After composting, the concentrations of 12 specific odorous compounds other than ammonia did not exceed the allowable exhaust limits for odor. After composting, thermophiles represented 50% of all bacteria. After composting, the percentage of thermophile bacterial increased by 15%. Therefore, both stable composting operation and economic benefit can be expected when an ultra-thermophilic composting process is applied to food waste.

Development of Composting Technology in Animal Waste Treatment - Review -

  • Haga, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.604-606
    • /
    • 1999
  • Solid animal wastes in Japan are treated mainly by composting. The composting process under controlled conditions is able to convert the wastes into high-quality organic fertilizer. Various types of composting facilities with/without forced aeration and turning device are available. Characterization of the maturing process during composting was studied, to improve the quality of compost and to make the degree of maturity. Recycling of animal wastes as compost without any environmental pollution will be closely related to the development of sustainable agriculture with organic fertilizer in Japan.

축분의 퇴비화를 위한 최적 환경조건 (Optimum Environmental Conditions for Composting of Livestock Manure)

  • 임재명;한동준;강현재
    • 산업기술연구
    • /
    • 제13권
    • /
    • pp.3-17
    • /
    • 1993
  • The composting process is a suitable to dispose the livestock manure in terms of resources recovery. However the performence of composting process is greatly affected by the environmental conditions such as characteristics of manure, type of the bulking agent, initial moisture contents, temperature, recycle and so on. The purpose of this study is to evaluate the optimum environmental conditions of composting process for livestock manures. The analytical results indicated that no bulking agent was necessary for the cow manure because of the proper C/N ratio. However the pig manure required a bulking agent since the pig manure had not only low in C/N ration but poor ventilation characteristics. In addtion, the initial miosture content for optimum composting appeared to be about 60%. The temperature control was also an essential factor to enhance the activity of thermophilic microorganisms in the laboratory composting unit. It was further found that the recycle of composts may contributed the completion of composting precess as well as C/N ratio reduction and moisture control.

  • PDF

상업용 퇴비화를 위한 연속 통기식 파이로트 규모 반응조의 퇴비화 특성 (Composting Characteristics of a Continuous Aerated Pilot-scale Reactor Vessel for Commercial Composting)

  • 홍지형;최병민
    • 한국축산시설환경학회지
    • /
    • 제4권2호
    • /
    • pp.149-160
    • /
    • 1998
  • Hog manure slurry amended with sawdust was composted in pilot-scale reactor vessels using continuous aeration nuder different C/N ratios and pH conditions during composting high rate (decomposition) process. For each material two replicated piles were built and monitored over a period of three weeks. The compost piles had an initial volume of 0.18 ㎥. In this study we evaluated the temperature in compost O2 and CO2 evolution, aeration rate, NH3 concentration etc. and investigated the stability of compost during composting high rate process. According to measured results, while the maximum NH3 concentration during composting high rate process. According to measured results, while the maximum NH3 concentration during composting high rate was in the range of 213 to 412 ppm on 5th day which was near the optimum C/N(22∼24) and pH(7.5∼7.9). And then, the NH3 concentration reduced to between 22∼26 ppm by 13th day. The maximum NH3 concentration for the lower C/N(18∼19) and pH value of 6 reached 574∼1,063 ppm by the 16th through 11th days and the NH3 concentration during continuous aerated composting high rate process, it was more important to manage NH3 gas so that compost odor is reduced.

  • PDF

돈부의 호기성 퇴비화 단계별 물리.화학적 성상 변화 (Changes of Physicochemical Parameters During the Aerobic Composting Process of Swine Manure)

  • 김태일;정광화;최기춘;류병희;곽정훈;전병수;박치호;김형호;한정대
    • 한국축산시설환경학회지
    • /
    • 제3권1호
    • /
    • pp.13-18
    • /
    • 1997
  • This study was conducted to investigate the physicochemical changes during the aerobic composting of swine manure mixed with bulking agent, sawdust(v/v, 1:1), in a full-scale composting plant using rectangular escalator-aginated bed composting system. Physical and chemical properties were analyzed on the samples which were collected at 5, 15, and 25 day of composting, curing and final step. The results of this study were summarized as follows; 1. Moisture and K2O content, and pH of final step were higher than those of 5th day of composting (p<0.05). 2. Ammonium nitrogen, total organic corbon and organic matter content, and electrical conductivity(EC) were significantly decreased (p<0.05) but nitrate nitrogen, ash and P2O5 content increased(p<0.05) throughout the aerobic composting process. 3. Total organic carbon per total nitrogen(C/N) and total organic matter per total nitrogen(OM/N) ratio were significantly decreased throughout the aerobic composting process(p<0.05). 4. Physical and chemical properties of swine manure were varied by aerobic fermentation using rectangular escalor-aginated bed composting system.

음식폐기물 퇴비화에서 유효 미생물 분리 및 첨가에 관한 연구 (A Study on the Composting Process of Food Waste by Seeding the Isolated Effective Microorganism)

  • 이장훈;정준오;박승호
    • 한국환경보건학회지
    • /
    • 제26권3호
    • /
    • pp.1-10
    • /
    • 2000
  • Although microorganisms play an important role in composting process, researches on the effective microorganism (EM) in composting process are rarely reported. In this study, three stages of work performed 1) investigation of composting facility 2) sample collection and isolation of the EM 3) lab-scale composting by seeding the isolated EM. For this, purpose, physical, chemical, and biological characteristics, such as temperature, moisture content, organic matter, pH population of microorganism, etc., were investigated during the process and the results were compared with those of a control(non-seeded). In the composting facility, the most active degradation of food waste was suppsed to occur in 10-11th day of composting by observing the temperature and CO2 emission. The population of bacterial and fungi was highest in thermophilic stage. Meanwhile that of actinomycetes and yeast was relatively uniform during the process. In the lab-scale test, the thermophilic stage was maintained longer(more than 9 days in 17 days of experiment) in the seeded which was favored for the high reduction of organic matter and moisture. Reduction rates of lipids and salinity were also increased in the seeded. It confirmed these results that the population of microorganisms in the seeded was observed higher in several orders than the control. However, pH of the seeded was maintained as low as about 4.5 throughout the experiment except the final period of the process. Meanwhile, pH of the control rose in the early stage of the experiment. This was probably due that the seeded microorganisms collected from the composting facility was adapted to the low pH environment.

  • PDF

Effects of Raw Materials and Bulking Agents on the Thermophilic Composting Process

  • Tang, Jing-Chun;Zhou, Qixing;Katayama, Arata
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.925-934
    • /
    • 2010
  • Three typical biological solid wastes, namely, animal manure, garbage, and sewage sludge, were compared with regard to the composting process and the changes in microbial community structure. The effects of different bulking agents such as rice straw, vermiculite, sawdust, and waste paper were compared in manure compost. The differences in the microbial community were characterized by the quinone profile method. The highest mass reduction was found in garbage composting (56.8%), compared with manure and sludge (25% and 20.2%, respectively). A quinone content of $305.2\;{\mu}mol/kg$ was observed in the late stage of garbage composting, although the diversity index of the quinone profile was 9.7, lower than that in manure composting. The predominant quinone species was found to be MK-7, which corresponds to Gram-positive bacteria with a low G+C content, such as Bacillus. The predominance of MK-7 was especially found in the garbage and sludge composting process, and the increase in quinones with partially saturated long side-chains was shown in the late composting process of manure, which corresponded to the proliferation of Actinobacteria. The effects of different bulking agents on the composting process was much smaller than the effects of different raw materials. High organic matter content in the raw materials resulted in a higher microbial biomass and activity, which was connected to the high mass reduction rate.

유기성 폐기물의 이동용 퇴비화 장치개발에 관한 연구 (The Mobile Composting Device Development of Organic Wastes)

  • 신현곤
    • 유기물자원화
    • /
    • 제21권2호
    • /
    • pp.56-62
    • /
    • 2013
  • 유기성 폐기물은 더 이상 처리대상이 아닌 자원이며 이러한 자원화 방법 중의 하나인 퇴비화는 자원의 재활용적인 측면에서 가장 친환경적인 방법이라 할 수 있다. 퇴비화는 그 방법에 상관없이 발효공정과 숙성공정이라는 핵심적인 공정 또는 과정을 거치게 된다. 본 연구에서는 유기성 폐기물을 퇴비화 처리하는 핵심장치인 기존 발효 및 숙성공정의 문제점을 파악하고 이러한 문제점을 해결하기 위한 이동용 퇴비화 장치 개발에 관한 연구가 수행되었다. 실험에 사용된 반응용기는 회전되므로 교반 도중 이물질 등에 의해 중지되는 일이 없고, 혼합이 완벽하게 일어난다. 그리고 공기량을 조절함으로써 반응용기 내부의 온도를 균일하게 유지시킬 수 있으므로 미생물을 이용한 발효 및 숙성이 용이하다. 또한, 기존의 발효장치에 비해 경제성이 있으며 인적, 물적 관리비가 절감되고 유기성 폐기물을 이용한 퇴비제품을 대량 생산할 수 있다. 특히, 공간을 적게 차지하면서도 유기성 폐기물이 공기와 접촉하는 면적을 증대시킬 수 있게 됨과 더불어, 이동가능하게 된 퇴비화장치를 제공하는 효과가 있다.

Bacterial Communities Developing during Composting Processes in Animal Manure Treatment Facilities

  • Yamamoto, Nozomi;Otawa, Kenichi;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권6호
    • /
    • pp.900-905
    • /
    • 2009
  • We analyzed succession of the bacterial communities during composting of animal manure in three individual facilities. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) targeting for the bacterial 16S rRNA gene were used to clarify the changes of bacterial community throughout each composting process. Our study revealed that the bacterial community structures differed during the composting process. The bacterial community in composting of facility A showed little change throughout the process. In the compost sample from facility B, its community had a small shift as the temperature increased. In compost from facility C, the temperature dynamically changed; it was shown that various bacterial communities appeared and disappeared as follows: in the initial phase, the members of phylum Bacteroidetes dominated; in the thermophilic phase, some bacteria belonging to phylum Firmicutes increased; towards the end, the community structure consisted of three phyla, Bacteroidetes, Firmicutes, and Proteobacteria. This study provides some information about the bacterial community actually present in field-scale composting with animal manure.