• Title/Summary/Keyword: composite-$Al_2O_3$

Search Result 570, Processing Time 0.03 seconds

Composite TiN-Al2O3 Syntheses and Hydrogen Permeability Characteristics Evaluation (복합 TiN-Al2O3 합성과 수소투과도 특성 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JE-SEON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.2
    • /
    • pp.177-183
    • /
    • 2020
  • To utilize hydrogen energy, high-yield, high-purity hydrogen needs to be produced; therefore, hydrogen separation membrane studies are being conducted. The membrane reactor that fabricates hydrogen needs to have high hydrogen permeability, selective permeability, heatresistant and a stable mechanical membrane. Dense membranes of Pd and Pd alloys are usually used, but these have drawbacks associated with high cost and durability. Therefore, many researchers have studied replacing Pd and Pd alloys. Dense TiN membrane is highly selective and can separate high-purity hydrogen. The porous alumina has a high permeation rate but low selectivity; therefore, separating high-purity hydrogen is difficult. To overcome this drawback, the two materials are combined as composite reclamations to produce a separation membrane with a high penetration rate and high selectivity. Accordingly, TiN-alumina was manufactured using a high-energy ball mill. The TiN-alumina membrane was characterized by X-ray diffraction analysis, scanning electron microscopy, and energy dispersive spectroscopy. The hydrogen permeability of the TiN-alumina membrane was estimated by a Sievert-type hydrogen permeation membrane apparatus. Due to the change in the diffusion mechanism, the transmittance value was lower than that of the general TiN ceramic separator.

A Study of the Effects of Na Ion on Codeposition of Particles in the Formation of Electroless Ni Composite Coatings (무전해 Ni 복합도금에서 분말의 공석에 미치는 Na 이온의 영향)

  • 이원해;이승평
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.101-108
    • /
    • 1989
  • Effects of Na+ ion on zeta potential of SiC and Al2O3 particles suspended in nikel sufate and nickel chloride solutions were investigated. various complexing agents for Ni2+ ion were added to electroless Ni composite bath and the effects of the complexing agents on zeta potential and codeposition of the particles from the baths were studied. It was confirmed that Na+ ion was absorbed on the particles bringing about the positive surface charge and thus they promoted the entrapment of the particles into the nickel deposit. On the basis of these results it was possible to deposit SiCc particle in nickel chloride electrolyte containing complex agent such as trisodium citrate+sodium succinate.

  • PDF

GYAGG/6LiF composite scintillation screen for neutron detection

  • Fedorov, A.;Komendo, I.;Amelina, A.;Gordienko, E.;Gurinovich, V.;Guzov, V.;Dosovitskiy, G.;Kozhemyakin, V.;Kozlov, D.;Lopatik, A.;Mechinsky, V.;Retivov, V.;Smyslova, V.;Zharova, A.;Korzhik, M.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1024-1029
    • /
    • 2022
  • Composite scintillation screens on a base of Gd1.2Y1.8Ga2.5Al2.5O12:Ce (GYAGG) scintillator have been evaluated for neutron detection. Besides the powdered scintillator, the composite includes 6LiF particles; both are merged with a binder and deposited onto the light-reflecting aluminum substrate. Results obtained demonstrates that screens are suitable for use with a silicon photomultiplier readout to create a prospective solution for a compact and low-cost thermal neutron sensor. Composite GYAGG/6LiF scintillation screen shows a pretty matched sensitivity and γ-background rejection with a widely used ZnS/6LiF screens however, possesses forty times faster response.

Comparative Analysis of the Characteristics of Natural Zeolites from Mongolia, Korea, and the United State (몽골, 한국, 미국 천연 제올라이트의 특성 비교 분석)

  • Battsetseg, Bayarsaikhan;Kim, Hu Sik;Kim, Young Hun;Kim, Jeong Jin;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.141-151
    • /
    • 2022
  • The 16 natural zeolites collected from Mongolia (6 types), the United States (1 type), and Korea (9 types) were characterized by XRD, XRF, TGA, DTA, and CEC analysis. All 16 samples are composite minerals. Two or more mineral phases co-exist and consist primarily of minerals such as clinoptilolite, heulandite, mordenite, and chabazite. In certain samples, minerals like illite and quartz were present as impurities. The XRF analysis showed that the 16 natural zeolites contain SiO2, Al2O3, K2O, CaO, Na2O, MgO, and Fe2O3 oxides. The cation exchange capacity of the U-1 sample was 223.3 meg/100 g, which is higher than the rest of the samples. M-6 sample in Mongolian natural zeolite and K-1 sample in Korean natural zeolite showed the highest cation exchange capacity at 166.6 meg/100 g. As a result of thermal differential and thermos gravimetric analysis, all 16 samples showed excellent thermal stability up to 600℃.

Fabrication of Metal Matrix Composites and Development of Forming System in Mashy State (반응고법에 의한 금속복합재료의 제조 및 성형 시스템의 개발)

  • 강충길;김현우;김영도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.581-593
    • /
    • 1990
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by strirring of Al7075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semi-solid alloy. The possibility o homogeneous fiber-reinforce aluminum alloy by addition of $Al_{2}$O$_{3}$ short fibers with vigorous agitation was investigated. The billet of composite materials was fabricated by squeeze casting, and homogeneous dipersion state of fibers in billet of fabricated metal matrix composites was observed. A slurry of semi-solid short fiber metal matrix composites is used in the direct rolling process, and this process showed the fabrication possibility of metal matrix composite sheets. The fabricated sheet was tested regarding vickers hardness, elongation and micro-structure. It has become clear that mashy state processing and working are very useful to obtain parts of composites material closed to near net shape.

Preparation of $Al_2O_3$-based Polyimide Composite Thick Films without Sintering for Integrated Substrates Employing Aerosol Deposition Method (Aerosol Deposition Method를 이용한 적층 기판용 무소성 알루미나-폴리이미드 복합체 후막의 제조)

  • Kim, Hyung-Jun;Yoon, Young-Joon;Kim, Jong-Hee;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.347-347
    • /
    • 2008
  • 본 연구에서는 별도의 소결과정 없이 상온에서 치밀한 복합체 후막의 제조가 가능한 Aerosol Deposition Method (ADM)를 이용하여 SOP를 실현시키기 위한 기판 재료로서 알루미나 기반의 알루미나-폴리이미드 복합체를 제조하고 그 특성에 대한 평가를 진행하였다. SEM 관찰결과 기공이 거의 없고 치밀한 구조의 복합체가 상온에서 성공적으로 형성되었음이 확인되었다. XRD 와 FT-IR 분석 결과 알루미나와 폴리이미드 모두가 복합체에 존재함을 확인할 수 있었다. 또한 XRD 분석결과 출발 원료에 폴리이미드 함량이 증가할수록 ADM으로 제조된 복합체 내부의 알루미나의 결정자 크기가 증가하는 결과를 보였다. 복합체의 알루미나 충진율을 확인하기 위한 간접적인 방법으로 복합체 후막을 연마하여 복합체 내부를 노출시킨 후 폴리이미드의 용매인 Methyl Ethyl Ketone으로 폴리이미드를 식각시켜 남아있는 알루미나 영역을 관찰한 SEM 분석결과 알루미나가 60% 이상 복합체의 대부분을 이루고 있다는 사실을 관찰할 수 있었다. 복합체의 미세구조를 확인하기 위하여 TEM 분석결과 기존에 보고된 ADM으로 제조된 알루미나 후막의 결정자 크기인 10~20 nm 보다 큰 100 nm 범위의 결정자 크기를 관찰 할 수 있었다. 유전특성평가 결과 유전율과 tan$\delta$는 1 MHz에서 각각 9.0, 0.0072로서 알루미나만을 원료로 성막시킨 후막의 유전 특성을 크게 떨어뜨리지 않으며 알루미나 후막과 유사한 결과를 보였다. 추후 복합체의 균일성 향상 및 고주파 영역의 유전 특성 향상을 통하여 세라믹의 취성 및 가공성이 개선된 3 차원 적층 기판재료로의 응용이 기대될 것으로 전망된다.

  • PDF

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Sintering and Characterization of SiC-matrix Composite Including TRISO Particles (TRISO 입자를 포함하는 SiC 복합소결체의 소결 및 특성 평가)

  • Lee, Hyeon-Geun;Kim, Daejong;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.418-423
    • /
    • 2014
  • Fully ceramic micro encapsulated (FCM) nuclear fuel is a concept recently proposed for enhancing the stability of nuclear fuel. FCM nuclear fuel consists of tristructural-isotropic (TRISO) fuel particles within a SiC matrix. Each TRISO fuel particle is composed of a $UO_2$ kernel and a PyC/SiC/PyC tri-layer which protects the kernel. The SiC ceramic matrix is created by sintering. In this FCM fuel concept, fission products are protected twice, by the TRISO coating layer and by the SiC ceramic. The SiC ceramic has proven attractive for fuel applications owing to its low neutron-absorption cross-section, excellent irradiation resistivity, and high thermal conductivity. In this study, a SiC-matrix composite containing TRISO particles was sintered by hot pressing with $Al_2O_3-Y_2O_3$ additive system. Various sintering conditions were investigated to obtain a relative density greater than 95%. The internal distribution of TRISO particles within the SiC-matrix composite was observed using an x-ray radiograph. The fracture of the TRISO particles was investigated by means of analysis of the cross-section of the SiC-matrix composite.

Influence of Inhibitors on the Corrosion of Al and Al-composites in Chloride-containing Solutions - A Review

  • Kumar, Neeraj;Srivastava, Ashok K.;Gautam, Prabhat;Manoj, M.K.
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.280-286
    • /
    • 2022
  • Corrosion is a natural, inevitable process, and is one of the world's most serious problems. Losses incurred due to corrosion are extremely expensive for society. Several technological strategies have been explored and implemented to address these losses. The use of inhibitors to prevent corrosion is a common and efficient method to reduce corrosion losses. This review covers Al and Al-composite corrosion inhibitors in chloride-containing solutions, because of their popularity in a broad array of industrial applications. A vast number of studies in the literature detail the common tendency of Al and Al-composites with reinforcements to deteriorate. Accordingly, it is worthwhile to employ inhibitors to protect them, as discussed in the present work. The emphasis is on selecting the smartest corrosion inhibitor and evaluating its performance. According to the study, the most commonly used corrosion inhibitors are 1,4-naphthoquinone (NQ), 1,5-naphthalene diol, 3-amino-1,2,4-triazole-5-thiol (ATAT), ammonium tetrathiotungstate, clotrimazole, amoxicillin, antimicrobial and antifungal drugs. Electrochemical impedance spectroscopy (EIS), potentiodynamic (PDP), and weight loss were among the most commonly used modern electrochemical technologies to test inhibitors' efficacy under environmental conditions.

Flexure and tension tests of newly developed ceramic woven fabric/ceramic matrix composites (새로 개발된 세라믹 직포 보강 세라믹 기지 복합체의 인장 및 곡강도 시험)

  • Dong-Woo Shin;Jin-Sung Lee;Chang-Sung Lim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.73-87
    • /
    • 1996
  • The mechanical properties of 2D ceramic composites fabricated bythe newly developed powder infiltration and subsequent multiple impregnation process were characterised by both 3-point flexure and tensile tests. These tests were performed with strain gauge and acoustic emission instrument. The woven fabric composites used for the test have the basic combinations of $Al_{2}$$O_{3}$ fabric/$Al_{2}$$O_{3}$ and SiC fabric (Tyranno)/SiC. Uniaxially aligned SiC fibre(Textron SCS-6)/SiC composites were also tested for comparison, The ultimate flexural strength and first-matrix cracking stress of SiC fabric/SiC composite with 73% of theoretical density were about 300 MPa and 77 MPa respectively. However, the ultimate tensile strengths of composite were generally one third of flexural strengths, and first-matrix cracking stress in a tension test was also much lower than the value obtained from flexure test. The lower mechanical properties measured by tension test were analysed quantitatively bythe differences in stressed volume using Weibull statistics. This showed that the ultimate strength and the firs-tmatrix cracking stress of woven laminate composites were mainly determined bythe gauge length of fibres and the stressed volume of matrix respectively. Incorporation of SiC whiskers into the matrix increased first-matrix cracking stress by increasing the matrix failure strain of composites.

  • PDF