• Title/Summary/Keyword: composite tube

Search Result 632, Processing Time 0.027 seconds

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

Hot Spot Stress of Concrete-filled Circular Hollow Section N-joints Subjected to Axial Loads (축하중을 받는 콘크리트 충전 원형 강관 N형 이음부의 핫스폿 응력 특성)

  • Kim, In-Gyu;Chung, Chul-Hun;Kim, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.113-120
    • /
    • 2010
  • The use of Concrete filled circular hollow steel section (CFCHS) members in bridge design is a relatively new concept. The most important part of the design and durability of such structures is the design and the construction of the joints. In the design of recently constructed steel-concrete composite bridges using CFCHS truss girders for the main load carrying structure, the fatigue verification of the tubular spatial truss joints was a main issue. Welded CFCHS joints are very sensitive to fatigue because the geometric discontinuities of the welds lead to a high stress concentration. New research done on the fatigue behaviour of such joints has focused on CFCHS N-joints, directly welded, with finite element analysis method. A commercial software, ABAQUS, is adopted to perform the finite element analysis on the N-joints. This paper is main focused on these topics, including hot spot stress.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Mechanical Performance Study of Piggy Back Clamp for Submarine Cables (해저케이블용 피기백 클램프의 기계적 성능 연구)

  • Yun Jae Kim;Kyeong Soo Ahn;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.108-114
    • /
    • 2024
  • Due to the continuously increasing global demand for electricity, the demand for high-voltage submarine cables is also increasing. One of the issues that need to be addressed for submarine cables is the high production cost and expensive laying costs. Submarine cables exposed to the marine environment encounter external forces such as wave and current, leading to issues such as cable damage due to external factors or high maintenance costs in the event of an accident. Therefore, we are preparing for the uncertainty of the submarine environment through many protective materials and protective equipment. In this study, we examined the bending performance of piggyback clamps (PBC) and strap, which are representative protective equipment, in response to the submarine environment through analytical methods. To examine the structural performance of PBC, the bending performance were assessed under the maximum bending moment criterion of 15 kN·m for the flexible protection tube. As a result, it was confirmed that the structural performance regarding the bending moment of both PBC and straps was ensured.

FLUORIDE RELEASE AND MICROHARDNESS OF GIOMER ACCORDING TO TIME (Giomer의 불소 유리 양상 및 미세경도에 관한 연구)

  • Kim, Sang-Min;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.429-437
    • /
    • 2010
  • The aim of this study was to evaluate the fluoride release and microhardness of Beautifil II as giomer(Group I), F2000 Compomer as compomer(Group II), GC Fuji II LC Capsule as resin-modified glass ionomer(Group III) and $Filtek^{TM}$ Z350 as composite resin(Group IV) according to time. Forty discs(5 mm diameter and 2 mm height) were prepared for each material. Each disc was immersed in 3 ml of de-ionized water within polyethylene tube and stored at $37^{\circ}C$. Evaluations were performed by pH/ISE meter for analysis of fluoride release and hardness testing machine for analysis of microhardness over 31 days. The results can be summarized as follows : 1. For all groups except group IV, the greatest fluoride release was observed after the first day of the study period and then dramatically diminished over time. On the 7th day of the study period, fluoride release level was stabilized. 2. Group III showed the highest fluoride release among test groups and then group II, group I were followed. Significant difference in cumulative fluoride release over 31 days was found between each groups. Group IV showed no fluoride release during study period. 3. Group IV showed the highest microhardness among test groups and then group I, group II, group III were followed. Significant difference in microhardness was found between each group, except between group I and group II. 4. After 31 days, microhardness was slightly diminished in every group. However, no significant difference was found.

Cytotoxic Effect of Isolated Protein-bound Polysaccharides from Hypsizigus marmoreus Extracts by Response Surface Methodology (반응표면분석에 의한 해송이버섯(Hypsizigus marmoreus) 추출물 중 단백다당체의 암세포 성장억제효과)

  • Jung, Eun-Bong;Jo, Jin-Ho;Cho, Seung-Mock
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.12
    • /
    • pp.1647-1653
    • /
    • 2008
  • This study used response surface methodology (RSM) in an effort to optimize the water extraction conditions of Hypsizigus marmoreus in order to increase cytotoxicity activity of the extract. A central composite design was applied to investigate the effects of independent variables, which included the extraction temperature ($X_1$), extraction time ($X_2$), the ratio of solvent to sample ($X_3$) on dependent variables of the extracts, including extraction yield ($Y_1$) and protein content ($Y_2$). The estimated optimal conditions were as follows: $51.3^{\circ}C$ extraction temperature, 8.2 hrs extraction time, and 46.7 mL/g of solvent per sample. The extract (CE) was extracted at optimal condition and crude polysaccharides (CPS) were obtained from CE by ethanol precipitation, dialysis, and freeze drying. Neutral (NPS) and acidic (APS) fraction of polysaccharides were seperated from CPS by ion chromatography. The growth inhibitory effects of the APS (0.5 mg/mL) on AGS human cancer cells were 73.97%. CPS showed the highest growth inhibitory effects on HepG2 human cancer cell at 0.5 mg/mL. However all fraction polysaccharides from Hypsizigus marmoreus showed lower than 20% growth inhibition on SW480 human cancer cell.

An Experimental Study for Electro-active Polymer Electrode and Actuator (전기활성 고분자 전극 및 구동기에 관한 실험적 연구)

  • Lee, Jun-Man;Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lin, Zheng-Jie
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.289-294
    • /
    • 2013
  • A thinner is used to improve the multi-walled carbon nano-tube (CNT) and carbon black (CB) dispersion in a polymer matrix and to make a soft electrode. The electrical and mechanical properties of the soft electrodes are investigated as functions of CNT, CB and thinner content. The optimal mixing condition for the electrode is thinner 80, CNT 3.5, CB 18 (phr) on the basis of matrix (KE-12). The specific resistance of that is 73 (${\Omega}{\cdot}cm$), and tensile strength, tensile modulus, and elongation of that is 0.45 MPa, 0.21 MPa, and 184%, respectively. Also, a simple structure of the actuator with an optimized electrode and elastomer is fabricated and its characteristic is evaluated. At the operating voltage 25 kV, the displacement of an elastomer KE-12 is 2.24 mm, and that of an elastomer KE-12 with thinner 50 (phr) is 4.05 mm. It shows a higher displacement compared to that of 3M 4910 which has similar modulus. The actuator made with elastomer and electrode of the same material (KE-12) may have advantages for fatigue life and application.

Analytical Study on Hybrid Precast Concrete Beam-Column Connections (하이브리드 프리캐스트 보-기둥 접합부의 해석적 연구)

  • Choi, Chang-Sik;Kim, Seung-Hyun;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.631-639
    • /
    • 2013
  • Non-linear finite element analysis for newly developed precast concrete details for beam-to-column connection which can be used in moderate seismic region was carried out in this study. Developed precast system is based on composite structure and which have steel tube in column and steel plate in beam. Improving cracking strength of joint under reversed cyclic loading, joint area was casted with ECC (Engineering Cementitious Composites). Since this newly developed precast system have complex sectional properties and newly developed material, new analysis method should be developed. Using embedded elements and models of non-linear finite element analysis program ABAQUS previously tested specimens were successfully analyzed. Analysis results show comparatively accurate and conservative prediction. Using finite element model, effect of axial load magnitude and flexural strength ratio were investigated. Developed connection have optimized performance under axial load of 10~20% of compressive strength of column. Plastic hinge was successfully developed with flexural strength ratio greater than 1.2.

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Microshear bond strength of a flowable resin to enamel according to the different adhesive systems (접착시스템의 종류에 따른 유동성 레진과 법랑질의 미세전단 결합강도)

  • Kim, Jeong-Ho;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.50-58
    • /
    • 2011
  • Objectives: The purpose of this study was to compare the microshear bond strength (uSBS) of two totaletch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods: Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10) by adhesives used; OS group (One-Step Plus), SB group (Single Bond), CE group (Clearfil SE Bond), TY group (Tyrian SPE/One-Step Plus), AP group (Adper Prompt L-Pop) and GB group (G-Bond). After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350) was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results: 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05). 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05). 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions: Although adhesives using the same step were applied the enamel surface, the uSBS of a flowable resin to enamel was different.