• 제목/요약/키워드: composite trusses

검색결과 33건 처리시간 0.023초

Cost optimization of composite floor trusses

  • Klansek, Uros;Silih, Simon;Kravanja, Stojan
    • Steel and Composite Structures
    • /
    • 제6권5호
    • /
    • pp.435-457
    • /
    • 2006
  • The paper presents the cost optimization of composite floor trusses composed from a reinforced concrete slab of constant depth and steel trusses consisting of hot rolled channel sections. The optimization was performed by the nonlinear programming approach, NLP. Accordingly, a NLP optimization model for composite floor trusses was developed. An accurate objective function of the manufacturing material, power and labour costs was proposed to be defined for the optimization. Alongside the costs, the objective function also considers the fabrication times, and the electrical power and material consumption. Composite trusses were optimized according to Eurocode 4 for the conditions of both the ultimate and the serviceability limit states. A numerical example of the optimization of the composite truss system presented at the end of the paper demonstrates the applicability of the proposed approach.

Design of top concrete slabs of composite space trusses

  • El-Sheikh, Ahmed
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.319-330
    • /
    • 1999
  • The design of composite space trusses is a demanding task that involves taking several decisions on the truss depth, number of panels, member configuration, number of chord layers and concrete slab thickness and grade. The focus in this paper is on the design of top concrete slabs of composite space trusses, and in particular their thickness. Several effects must be considered in the process of designing the slab before an optimum thickness can be chosen. These effects include the inplane forces arising from shear interaction with the steel sub-truss and the flexural. and sheer effects of direct lateral slab loading. They also include a constructional consideration that the thickness must allow for sufficient cover and adequate space for placing the reinforcement. The work presented in this paper shows that the structural requirements on the concrete slab thickness are in many cases insignificant compared with the constructional requirements.

Behaviour of lightweight composite trusses in fire - A case study

  • Choi, Seng-Kwan;Burgess, Ian;Plank, Roger
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.105-118
    • /
    • 2007
  • On September $11^{th}$ 2001, the twin towers of the World Trade Center in New York City were struck by two hijacked airplanes. Despite severe local damage induced by the impact, the towers were able to sustain 102 and 56 minutes of the subsequent multi-storey fires before collapsing. The purpose of this study is to contribute to the understanding of the in-fire performance of composite trusses by examining the behaviour of the longer-span type used in the towers. It makes no attempt to be a forensic study of the actual events. Using the finite element package Vulcan, the structural mechanics of typical long-span composite floor trusses are explained, under a variety of scenarios, as the fire temperatures rise. Different boundary conditions, degrees of protection and loading are all covered, the results being presented mainly in the form of graphs of deflection and internal force of members against time.

An efficient method for reliable optimum design of trusses

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1069-1084
    • /
    • 2016
  • This paper introduces a new and effective design amplification factor-based approach for reliable optimum design of trusses. This paper may be categorized as in the family of decoupled methods that aiming for a reliable optimum design based on a Design Amplification Factor (DAF). To reduce the computational expenses of reliability analysis, an improved version of Response Surface Method (RSM) was used. Having applied this approach to two planar and one spatial truss problems, it exhibited a satisfactory performance.

H형강을 사용한 합성트러스의 합성효과 (The Composite Action of Composite Truss Using H-Shaped Section Steel)

  • 이명재
    • 한국강구조학회 논문집
    • /
    • 제21권6호
    • /
    • pp.637-646
    • /
    • 2009
  • 바닥슬래브가 있는 경우 국내에서 설계되는 트러스보는 바닥 슬래브와의 합성효과를 고려하지 않고 있다. 이 연구에서는 상하현재를 H형강으로 구성한 합성트러스를 사용하여 기본적인 실험을 수행하였다. 실험에서는 합성트러스의 역학적 거동을 조사하기 위하여 전단연결재의 유무에 따른 영향을 검토하였다. 실험체로서는 철골트러스, 비합성 및 합성트러스 등으로 이루어지며 가력방법으로는 중앙집중재하와 균등휨의 두가지 방법을 사용하였다. 시어 커넥터를 사용한 합성트러스의 합성효과가 실험적으로 확인되어졌다.

고강도 T형강을 사용한 합성트러스의 합성효과 (The Composite Effects of Composite Truss using High Strength T-shaped Steel)

  • 채대진;이명재
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.637-645
    • /
    • 2012
  • 슬래브와 트러스 보의 합성효과를 고려한 합성트러스의 경우 단순히 고정하중으로 취급되던 슬래브를 구조체로서 활용할 수 있으므로 구조재료를 매우 효과적으로 활용할 수 있게 되고 구조체의 강성이 증가하게 되므로 장스팬 설계의 중요 변수인 사용성 측면에서도 상당한 이점을 확보할 수 있게 된다. 이와 더불어 슬래브 하부에 다양한 설비 시설을 위한 공간이 확보되므로 보의 춤이 깊어지는데 대한 단점을 상당부분 상쇄할 수 있게 된다. 본 연구는 합성 트러스 시스템을 개발함에 있어 상하현재를 600MPa급 고강도강을 사용하여 실험과 수치해석을 통해 스터드 커넥터의 유 무에 따른 합성 트러스의 역학적 거동 특성을 평가하는 것을 목적으로 한다. 또한 상하현재로 일반강재를 사용한 연구결과와 비교하였다. 그 결과 고강도강으로 T형강을 사용한 경우는 일반강재를 T형강으로 사용한 경우보다 구조성능에서 더욱 효율적임을 알 수 있었다.

T형강을 사용한 합성트러스의 합성효과 (The Composite Effects of Composite Truss using T-Shaped Steels)

  • 이명재;최병정;김희동;강덕경;심민주
    • 한국강구조학회 논문집
    • /
    • 제22권6호
    • /
    • pp.599-608
    • /
    • 2010
  • 트러스의 상현재와 콘크리트 슬래브가 합성 거동하는 합성 트러스는 장스팬에 경제적인 구조시스템임에도 불구하고 현재 국내에서 설계되는 대부분의 트러스 보는 바닥슬래브와의 합성효과를 전혀 고려하지 않고 설계되고 있다. 슬래브와 트러스 보의 합성효과를 고려할 경우에는 단순히 고정하중으로 취급되던 슬래브를 구조체로서 활용할 수 있으므로 구조 재료를 매우 효율적으로 활용할 수 있게 되고 구조체의 강성이 증가하게 되므로 장스팬 설계의 중요 변수인 사용성 측면에서도 상당한 이점을 확보할 수 있게 된다. 이와 더불어 슬래브 하부에 다양한 설비 시설을 위한 공간이 확보되므로 보의 춤이 깊어지는데 대한 단점을 상당부분 상쇄할 수 있게 된다. 본 연구는 합성 트러스 시스템을 개발함에 있어 국내 현실을 충분히 반영하여 국내 설계 및 시공 현장에서 바로 적용하기 위한 초기단계의 연구로서 실험과 수치해석을 통해 스터드 커넥터의 유 무에 따른 합성 트러스의 역학적 거동 특성을 평가하기 위한 것에 목적을 두고 있다.

Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm

  • Grzywinski, Maksym;Selejdak, Jacek;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.747-753
    • /
    • 2019
  • Metaheuristic algorithm is used to solve the weight minimization problem of truss structures considering shape, and sizing design variables. The cross-sectional areas of the line element in trusses are the design variables for size optimization and the changeable joint coordinates are the shape optimization used in this study. The design of plane and spatial truss structures are optimized by metaheuristic technique named Teaching-Learning-Based Optimization (TLBO). Finite element analyses of structures and optimization process are carried out by the computer program visually developed by the authors coded in MATLAB. The four benchmark problems (trusses 2D ten-bar, 3D thirty-seven-bar, 3D seventy-two-bar and 2D two-hundred-bar) taken from literature are optimized and the optimal solution compared the results given by previous studies.

Cost minimization of prestressed steel trusses considering shape and size variables

  • Aydin, Zekeriya;Cakir, Ebru
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.43-58
    • /
    • 2015
  • There are many studies on the optimization of steel trusses in literature; and, a large number of them include a shape optimization. However, only a few of these studies are focused on the prestressed steel trusses. Therefore, this paper aims to determine the amounts of the material and cost savings in steel plane trusses in the case of prestressing. A parallel-chord simply supported steel truss is handled as an example to evaluate the used approach. It is considered that prestressing tendon is settled under the bottom bar, between two end supports, using deviators. Cross-sections of the truss members and height of the truss are taken as the design variables. The prestress losses are calculated in two steps as instantaneous losses and time-dependent losses. Tension increment in prestressing tendon due to the external loads is also considered. A computer program based on genetic algorithm is developed to solve the optimization problem. The handled truss is optimized for different span lengths and different tendon eccentricities using the coded program. The effects of span length and eccentricity of tendon on prestressed truss optimization are investigated. The results of different solutions are compared with each other and those of the non-prestressed solution. It is concluded that the amounts of the material and the cost of a steel plane truss can be reduced up to 19.9% and 14.6%, respectively, by applying prestressing.

Practical second-order analysis and design of single angle trusses by an equivalent imperfection approach

  • Cho, S.H.;Chan, S.L.
    • Steel and Composite Structures
    • /
    • 제5권6호
    • /
    • pp.443-458
    • /
    • 2005
  • Steel angles are widely used in roof trusses as web and chord members and in lattice towers. Very often angle members are connected eccentrically. As a result, not only an angle member is under an axial force, but it is also subject to a pair of end eccentric moments. Moreover, the connection at each end provides some fixity so neither pinned nor the fixed end represents the reality. Many national design codes allow for the effects due to eccentricities by modifying the slenderness ratio and reducing the compressive strength of the member. However, in practice, it is difficult to determine accurately the effective length. The concept behind this method is inconsistent with strength design of members of other cross-sectional types such as I or box sections of which the buckling strength is controlled by the Perry constant or the initial imperfection parameters. This paper proposes a method for design of angle frames and trusses by the second-order analysis. The equivalent initial imperfection-to-length ratios for equal and unequal angles to compensate the negligence of initial curvatures, load eccentricities and residual stresses are determined in this paper. From the obtained results, the values of imperfection-to-length ratios are suggested for design and analysis of angle steel trusses allowing for member buckling strength based on the Perry-Robertson formula.