• 제목/요약/키워드: composite timber

검색결과 57건 처리시간 0.021초

Effect of creep on behaviour of steel structural assemblies in fires

  • Cesarek, Peter;Kramar, Miha;Kolsek, Jerneja
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.423-435
    • /
    • 2018
  • There are presently two general ways of accounting for hazardous metal creep in structural fire analyses: either we incorporate creep strains implicitly in hardening model ('implicit-creep' plasticity) or we account for creep explicitly ('explicit-creep' plasticity). The first approach is simpler and usually used for fast engineering applications, e.g., following proposals of EN 1993-1-2. Prioritizing this approach without consideration of its limitations, however, may lead to significant error. So far the possible levels of such error have been demonstrated by few researchers for individual structural elements (i.e., beams and columns). This paper, however, presents analyses also for selected beam-girder assemblies. Special numerical models are developed correspondingly and they are validated and verified. Their important novelty is that they do not only account for creep in individual members but also for creep in between-member connections. The paper finally shows that outside the declared applicability limits of the implicit-creep plasticity models, the failure times predicted by the applied alternative explicit-creep models can be as much as 40% shorter. Within the limits, however, the discrepancies might be negligible for majority of cases with the exception of about 20% discrepancies found in one analysed example.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권4호
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

A Study on the Block Shear Strength according to the Layer Composition of and Adhesive Type of Ply-Lam CLT (Ply-Lam CLT의 층재 구성 및 접착제 종류에 따른 블록전단강도에 관한 연구)

  • CHOI, Gyu Woong;YANG, Seung Min;LEE, Hyun Jae;KIM, Jun Ho;CHOI, Kwang Hyeon;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.791-806
    • /
    • 2020
  • In this study, a block shear strength test was conducted to compare and analyze the strength and failure mode on the glued laminated timber, CLT, and Ply-lam CLT, which are mainly used for the construction of wood construction as engineering wood. Through this, the Ply-lam CLT manufacturing conditions for optimum production, such as the type of lamina, plywood, adhesive, and layer composition, were investigated. The results are as follow. Through block shear strength test, it showed high strength in the order of glued laminated timber, Ply-lam CLT and CLT. In particular, the shear strength of Ply-lam CLT, which is made of a composite structure of larch plywood and larch lamina, passed 7.1 N/㎟, which is a Korean industrial standards for block shear strength of structural glued laminated timber. In addition, in this study, there was no different in shear strength according to the adhesive type used for glulam, CLT, and Ply-lam CLT adhesion. However, in the case of Ply-lam CLT, the difference in shear strength of Ply-lam CLT was shown according to the type of lamina and plywood. The results showed high strength in the order of Larix kaempferi > Mixed light hardwood ≒ Pinus densiflora, sieb, et, Zucc plywood. The optimal configuration of Ply-lam CLT is when larch plywood and larch lamina are used, and it is decided that the adhesive can be used by selecting PRF and PUR according to the application. The results of block shear strength failure mode by type of wood based materials were analyzed. The failure mode showed shear parallel-to-grain for glulam, rolling shear for CLT, and shear parallel-to-grain and rolling for ply-lam CLT. This is closely related to shear strength results and is decided to indicate higher shear strength in Ply-lam CLT than in CLT due to rolling shear.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

A Study on Deflection Characteristics of Plywood for Wood Based Flooring by Veneer Composition (마루판용 합판의 단판 구성요소에 따른 변형 특성에 관한 연구)

  • Pi, Duck-Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권1호
    • /
    • pp.42-50
    • /
    • 2013
  • Since 1990's, a plywood for flooring base has gotten customers' demand. Costs of raw material and production increased because of changed environment of industry. Tropical timber such as Red Meranti (Shorea acuminate) used for raw material of the floor has been depleting beside countries in South Eastern Asia changed species of afforestation. As a result, it gets hard to secure good quality of raw material for plywood. Moreover plywood price is increased suddenly after earthquake in Japan. Eucalyptus (Eucalyptus globulus) in china has been using for raw material as a countermeasure of changed environment of industry. In this study, possibility of using flooring consisted of Eucalyptus veneer as crossband layers was checked by deflection experiments. Flooring consisted of Red Meranti was used for comparison. Two factors which impact on deflection are a type of density gradient and density difference between Long-grain veneer and Short-grain veneer. Red Meranti samples are M type of density gradient on the other hand Eucalyptus samples are W type of density gradient. The more samples have high density difference, the more deformation was checked. A sample which has big density difference between core and cross bands layer warp more also deform. Flooring was deformed smaller than plywood and samples which have big density difference was deformed more.

Performance Evaluation for Bending Strength and Tensile Type Shear Strength of GFRP Reinforced Laminated Wooden Pin (GFRP보강적층목재핀의 휨강도 및 인장형 전단내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Kim, Dae-Gil;Kim, Sang-Il;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권3호
    • /
    • pp.258-265
    • /
    • 2014
  • By replacing the previous metal connector on the joints of timber structure, the GFRP reinforced laminated wooden pin was produced using a wooden material and Glass fiber reinforced plastic(GFRP) composite laminate. In addition, using the reinforced wooden pin, the tensile type shear strength test was conducted. Based on the result of the bending strength test of the reinforced laminated wooden pin according to the GFRP arrangement, a specimen(Type-A) with a single insertion of GFRP for each layer have shown the most favorable performance. Also, it was verified that densified specimen hot pressed for an hour at the temperature of $150^{\circ}C$ and with the oppression pressure $1.96N/mm^2$ have shown the improved performance of 1.57 times than the specimen without the densification. And in the bending strength test considering the load direction, edgewise have shown a higher performance of 3.51 times than the flatwise. A shear strength test was conducted using the Type-A reinforced laminated wooden pin which have shown a moderate performance on the test. Based on the test conducted by differentiating the type of the joint plate and the connector, compared to the specimen(Type-DS) applied with the drift pin and steel plate, the specimen( Type-WL) applied with the GFRP reinforced laminated wooden pin and GFRP reinforced wooden laminated plate have shown 1.12 times higher shear strength and also have shown an excellent toughness even after the maximum load.

Deterioration Evaluation Method of Noise Barriers for Managements of Highway (고속도로 방음벽 유지관리를 위한 방음벽 노후도 평가 방안)

  • Kim, Sangtae;Shin, Ilhyoung;Kim, Kyoungsu;Kim, Daae;Kim, Heungrae;Im, Jahae;Lee, Jajun
    • Journal of Environmental Impact Assessment
    • /
    • 제28권4호
    • /
    • pp.387-399
    • /
    • 2019
  • This research aimed to prepare the classification of the damage types and the damage rating system of noise barriers for expressway noise barriers and to develop deterioration evaluation method of noise barriers by reflecting them. The noise barrier consists of soundproof panels, foundations and posts and the soundproof panels with 10 different types of materials are used in a single or mixed form.In this paper, damage of soundproof panel shows a single or composite damage, and thus a evaluation model of deterioration has been developed for noise barriers that can reflect the characteristic of noise barriers. Materials used mainly for soundproof walls were divided into material types for metal, plastic, timber, transparent and concrete. And damage types for noise barrier were classified into corrosion, discoloration, deformation, spalling and dislocation and damage types were subdivided according to the noise barrier's components and materials. Damage rating was divided into good, minor, normal and severe for each major part of noise barrier to assess damage rating of soundproof panel, foundation and post. The deterioration degree of noise barrier was evaluated comprehensively by using the deterioration evaluation method of whole noise barrier using weighted average. Deterioration evaluation method that can be systematically assessed has been developed for noise barrier using single or mixed soundproof panel and noise barrier with single or complex damage types. Through such an evaluation system, it is deemed that the deterioration status of noise barrier installed can be systematically understood and utilized for efficient maintenance planning and implementation for repair and improvement of noise barriers.