• Title/Summary/Keyword: composite thin-walled beam

Search Result 93, Processing Time 0.026 seconds

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca;Mola, Franco
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.275-301
    • /
    • 2009
  • The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.

Iterative global-local procedure for the analysis of thin-walled composite laminates

  • Afnani, Ashkan;Erkmen, R. Emre
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.693-718
    • /
    • 2016
  • This paper presents a finite element procedure based on Bridging multi-scale method (BMM) in order to incorporate the effect of local/cross-sectional deformations (e.g., flange local buckling and web crippling) on the global behaviour of thin-walled members made of fibre-reinforced polymer composite laminates. This method allows the application of local shell elements in critical regions of an existing beam-type model. Therefore, it obviates the need for using computationally expensive shell elements in the whole domain of the structure, which is otherwise necessary to capture the effect of the localized behaviour. Consequently, highly accurate analysis results can be achieved with this method by using significantly smaller finite element model, compared to the existing methods. The proposed method can be used for composite polymer laminates with arbitrary fibre orientation directions in different layers of the material, and under various loading conditions. Comparison with full shell-type finite element analysis results are made in order to illustrate the efficiency and accuracy of the proposed technique.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

Application of Steel-tubed Concrete Structures in High-rise Buildings

  • Zhou, Xuhong;Liu, Jiepeng
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.161-167
    • /
    • 2019
  • Making full use of material strength, maintaining sufficient ductility of structural components, and ensuring simple and robust connections are crucial to the development of steel-concrete composite structures. The steel-tubed concrete structure uses thin-walled steel tube to provide confinement, so that the strength and ductility of the concrete core are improved. Meanwhile, the thin-walled steel tube is terminated at the beam-column joint to avoid the local buckling problem and simplify the connections between steel tube and RC members. A brief overview of the development of steel-tubed concrete structures is presented. Through the discussion on the structural behavior of steel-tubed concrete and the introduction of typical practical projects, the prospects for future research are highlighted.

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Steel-concrete composite bridge analysis using generalised beam theory

  • Goncalves, Rodrigo;Camotim, Dinar
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2010
  • This paper reports recent developments concerning the application of Generalised Beam Theory (GBT) to the structural analysis of steel-concrete composite bridges. The potential of GBT-based semi-analytical or finite element-based analyses in this field is illustrated/demonstrated by showing that both accurate and computationally efficient solutions may be achieved for a wide range of structural problems, namely those associated with the bridge (i) linear (first-order) static, (ii) vibration and (iii) lateral-torsional-distortional buckling behaviours. Several illustrative examples are presented, which concern bridges with two distinct cross-sections: (i) twin box girder and (ii) twin I-girder. Allowance is also made for the presence of discrete box diaphragms and both shear lag and shear connection flexibility effects.