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1. Introduction 

The composite thin-walled beam structure which has 

been used in modeling and analysis of the various 

mechanical systems are attractive to many fields of 

advanced technology because of its structural high 

performance and efficiency. According to its growing 

interest, many studies has going on to make this type of 

aircraft wing stable in certain circumstances
(1-3)

. 

This paper examines the structural dynamic response of 

the composite thin-walled beam structure induced by 

unsteady aerodynamics based on the mode expansion 

theorem and assumed mode shape, etc. In addition, it was 

presented that the control simulation results of its unstable 

dynamical phenomenon by using the sliding mode 

methodology. 

2. System Modeling 

2.1 Beam Structure 
In this paper, fiber-reinforced, closed-section, a single-

cell thin-walled beam is used in the modeling of the system 

(see Fig.1). 

 
Fig. 1. Geometric configuration of the structure 

 

For the chosen local and global coordinate systems, we 

can define the 3-D displacement quantities as follows
(3)

: 
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where 
x ,

z and   denote rotations of the plane of the 

cross-section about the axes x , z  and twist about the y

axis, respectively. 

Furthermore, the strains that contribute to the potential 

energy are easily derived as
(3)

: 

 

sapnwise: ( , , , ) ( , , ) ( , , )o n

yy yy yyn s y t s y t n s y t      

0tangential shear: ( , , ) ( , , ) ( ) ( , )sy sys y t s y t s y t     

0 0

transverse shear: ( , , )ny xy yz

z x

dz dx
s y t

ds ds

dz dx
u w

ds ds

  

 

  

        
   

 

2.2 Subsonic Aerodynamic Loads 
The indicial function approach gives a general and 

convenient way to describe the compressible unsteady 

aerodynamics in linear aerodynamic theory. 

From the indicial lift and moment functions due to the 

unit step change of the vertical translation velocity at the 

leading edge, the indicial lift ( TL ) and aerodynamic 

moment ( yTT 
) about the mid-chord are defined. Also the 

indicial lift ( qL ) and aerodynamic moment ( yqT 
) are 

derived from the indicial lift and moment functions due to 

the unit step change of the pitching rate at the leading edge.    

As a result, the total aerodynamic lift and moment about 

the mid-chord are
(4)

: 

 

total aerodynamic lift: ( , ) ( , ) ( , )ae T qL L L         

total aerodynamic moment: ( , ) ( , ) ( , )ae yT yqT T T       

 

Due to the limited space, the details are omitted. 
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2.3 Governing Equations 
Extended Hamilton’s Principles are usually used to get 

the governing equations and boundary conditions at one 

time. 
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 The structure features circumferentially asymmetric 

stiffness lay-up configuration. Hence the equations of 

motion and the boundary conditions are completely 

separated by two parts. We are mainly concerned about 

vertical bending, twist and vertical transverse shear part. So, 

the governing equation and the boundary condition about 

the vertical bending is
(5)

: 
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3. Sliding Mode Methodology 

3.1 Sliding Mode Observer 
We use the sliding mode observer to estimate of states, to 

require robustness against disturbance and observation 

spillover from the unmeasured states. The sliding mode 

observer has the form
(6)

: 
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where L , N  is the linear and nonlinear observer gain, 

while ( )v t is a discontinuous vector defined as
(7)

: 
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Herein  denotes the positive scalar function and 
3P is a 

positive definite symmetric matrix. 

 

3.2 Sliding Mode Control 
This type of control law is proper method for the 

uncertain dynamical model, because it has the nonlinear 

control part as follows
(8)

: 
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 The linear control law 
cL  that is state feedback control 

converges on equilibrium point through the hyperplane.    

And the second term in the RHS of an equation plays a 

role suppressing the effect of model uncertainty.  

4. Conclusion 

Aeroelastic response of the composite thin-walled beam 

structure is revealed by the simulation results. Its dynamic 

response is determined through the ply angle, sweep angle 

and the flight speed. Given conditions, the unstable 

dynamic phenomenon occurs near to a Mach number of 

0.7. Sliding mode controller based on sliding mode 

observer effectively decreases the plunging and pitching 

displacements of the wing structure. 
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