• Title/Summary/Keyword: composite superconductor

Search Result 41, Processing Time 0.044 seconds

High Speed Operating Test of a 300Wh Flywheel Energy Storage System Using Superconductor Bearings (초전도베어링을 이용한 300 Wh급 플라이휠 에너지저장장치의 고속운전시험)

  • 김영철;최상규;성태현;이준성;한영희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.514-520
    • /
    • 2001
  • A 300Wh class flywheel energy storage system using high Tc superconductor bearings(HTC SFES) is being developed by KIMM and KEPRI. HTC SFES consists of a flywheel rotor, superconductor bearings, a motor/generator and its controller, touch-down bearings, vacuum chamber, etc. Stiffness and damping values of superconductor bearings were experimentally estimated to be 67,700N/m and 29Ns/m respectively. The present HTC SFES was designed to have maximum operating speed of 33000 rpm, which is far above 2 rigid body mode critical speeds of 645rpm and 1,275rpm. Leaf-spring type touch-down bearing were utilized to have the system pass safely through the system critical speeds. It has been experimentally verified that the system can run stably up to 28,000 rpm so that HTC SFES is now expected to reach up to its maximum design speed of 33,000rpm without any difficulties. The Halbach array motor & generator has also been proven its effectiveness on transferring electrical energy to a rotaing composite flywheel in kinetic form.

  • PDF

Rotational Design of the Superconductor Flywheel Energy Storage System (플라이휠 에너지 저장시스템의 회전 설계)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Sung, Tae-Hyun;Han, Young-Hee;Lee, Jeong-Pill;Han, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.907-908
    • /
    • 2006
  • The energy storage systems are being widely researched for the electric power. The operations running in a vacuum chamber mainly consists of a composite flywheel rotor, superconductor bearings, a motor/generator and its controller. Among composed the apparatus, the floating magnet bearing consists of the ring-type permanent magnets with epoxy resin impregnation for reinforcement and surface protection. In order to storage as much energy as possible, the flywheel is supposed to be rotated with very high speed. The magnetic field is analyzed by using the Maxwell 2D/3D for the simulations.

  • PDF

Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System (10 kWh급 초전도 플라이휠 베어링의 강성 평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Kim, C.H.;Han, S.C.;Du, S.G.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  • PDF

Standardization of Critical Temperature Measurement based on IEC International Standard

  • Lee, Kyu-Won;Kim, Kyu-Tae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.123-127
    • /
    • 2003
  • For disseminating a ney IEC international standard of critical trmperature of NbTi,Nb$_3$Sn and Bi-2223 Composite Suterconductors, we develpted a measuring system and studied standardization of test method. The measuring system consisted of cryogenic reservoir, base plate, thermometer, voltmeter and current source. Various specimens of the Nbti, Nb$_3$Sn and Bi-2223 composite superconductors were tested using this system for measuring their critical temperatures. After measuring the resistance-temperature relation, the data were compensated with thermoelectric voltages for NbTi Nb$_3$Sn specimens. NbTi specimens showed 9.2 K ~ 9.5 K of transition temperature and Nb$_3$Sn specimen showed about 18 K. Bi-2223 specimens showed 104 K ~ 107 K of transition temperature.

RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi초전도 선재의 RRR거동패동)

  • 신형섭;배영준;하동우;오상수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In order to investigate the effect of fatigue damage on the properties of RRR in this study. fatigue tests at room temperature and residual resistivity measurement tests at 12K were carried out using annealed 9 strand Cu-Ni/NbTi/Cu composite cables Through fatigue tests of NbTi composite cables. a conventional S-N curve could be obtained even though there existed a possibility of fretting among strands, From the resistivity measurement of a NbTi strand after fatigue test, it was found that the RRR of xii·gin strand for annealed cables was 3 times more than that for as-received one. With increasing of fatigue cycles at a sress amplitude level. the RRR decreased. which was resulted from the accumulation of damage such as lattice defects and dislocation within the Cu stabilizer.

  • PDF

RRR Behavior due to Fatigue Damage in a NbTi Superconductor Cable (NbTi 초전도 케이블의 피로손상에 따른 RRR의 거동)

  • 신형섭;배영준;하동우;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.30-33
    • /
    • 1999
  • In this study, the fatigue test at room temperature and residual resistivity measurement test at 12K were carried out, respectively, using a 9 strand Cu-Ni/NbTi/Cu composite cable, in order to investigate how the fatigue damage effects on critical properties. Through the fatigue test of a 9 strand Cu-Ni/NbTi/Cu composite cable, a conventional S-N curve was obtained even though there existed a possibility of fretting among strands. From the resistivity measurement of a NbTi strand after fatigue tests, it was found that with increase of the repeated number the RRR increased slightly, and the trend became significant with increase in maximum value of the applied stress amplitude.

  • PDF

Annealing effect on RRR Behavior due to Fatigue Damage in NbTi Superconductor Cable (피로손상을 받은 NbTi 초전도 선재의 RRR거동에 미치는 아닐링 효과)

  • 신형섭;오상엽;하동우;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.104-108
    • /
    • 2000
  • In this study, the fatigue test at room temperature and residual resistivity measurement test at 12K were carried out, respectively, using a 0 strand Cu-Ni/NbTi/Cu composite cable, in order to investigate how the annealing treatment effects on critical properties due to fatigue damage. Through a fatigue test of a 0 strand Cu-Ni/NbTi/Cu composite cables, a conventional S-N curve was obtained even though there existed a possibility of fretting among strands. From the resistivity measurement of a NbTi strand after fatigue tests, it was found that the RRR for annealed cables was 3 times more than that for as-received one, but with increase of the repeated number the RRR decreased which was resulted from the accumulation of damage such as lattice defects dislocation within the Cu stabilizer.

  • PDF

Local strain / stress and their influence to mechano - electromagnetic properties of in composite superconducting wires

  • Osamura, Kozo;Machiya, Shutaro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • Practical superconducting wires are designed with a composite structure to meet the desired engineering characteristics by expert selection of materials and design of the architecture. In practice, the local strain exerted on the superconducting component influences the electromagnetic properties. Here, recent progress in methods used to measure the local strain in practical superconducting wires and conductors using quantum beam techniques is introduced. Recent topics on the strain dependence of critical current are reviewed for three major practical wires: $Nb_3Sn$, BSCCO-2223 and REBCO tapes.

Design and Construction of 10 kWh Class Flywheel Energy Storage System (10 kWh급 플라이휠 에너지 저장 시스템 설계 및 제작)

  • Jung, S.Y.;Han, S.C.;Han, Y.H.;Park, B.J.;Bae, Y.C.;Lee, W.R.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 10 kWh class flywheel energy storage system (FESS) has been developed to evaluate the feasibility of a 35 kWh class SFES with a flywheel $I_p/I_t$ ratio larger than 1. The 10 kWh class FESS is composed of a main frame, a composite flywheel, active magnetic dampers (AMDs), a permanent magnet bearing, and a motor/generator. The flywheel of the FESS rotates at a very high speed to store energy, while being levitated by a permanent magnetic bearing and a pair of thrust AMDs. The 10 kWh class flywheel is mainly composed of a composite rotor assembly, where most of the energy is stored, two radial and two thrust AMD rotors, which dissipate vibration at critical speeds, a permanent magnet rotor, which supports most of the flywheel weight, a motor rotor, which spins the flywheel, and a central hollow shaft, where the parts are assembled and aligned to. The stators of each of the main components are assembled on to housings, which are assembled and aligned to the main frame. Many factors have been considered while designing each part of the flywheel, stator and frame. In this study, a 10 kWh class flywheel energy storage system has been designed and constructed for test operation.