• Title/Summary/Keyword: composite suitability

Search Result 59, Processing Time 0.028 seconds

Push out tests on various shear connectors used for cold-formed steel composite beam

  • Rajendran, Senthilkumar;Perumalsamya, Jayabalan;Mohanraj, Divya
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.315-323
    • /
    • 2022
  • Shear connectors are key elements that ensure integrity in a composite system. The primary purpose of a shear connector is to bring a high degree of interaction between composite elements. A wide variety of connectors are available for hot-rolled composite construction, connected to the beam through welding. However, with cold-formed members being very thin, welding of shear connectors is not desirable in cold-formed composite constructions. Shear connectors for cold-formed elements are limited in studies as well as in the market. Hence in this study, three different types of shear connectors, namely, single-channel, double channel, and self-tapping screw, were considered, and their performance assessed by the Push-out test as per Eurocode 4. The connection between channel shear connectors and the beam was made using self-tapping screws to avoid welding. The performance of the connectors was analyzed based on their ultimate capacity, characteristic capacity, ductility, and slippage during loading. Strength to weight ratio was also carried out to understand the proposed connectors' suitability for conventional ones. The results showed relatively higher initial stiffness and ductility for double channel connectors than other connectors. Also, self-tapping screws had a higher strength to weight ratio with low ductility.

Evaluating location suitability of Park-and-Ride facilities using GIS (GIS를 이용한 환승시설 입지 적합도 평가)

  • Kim, Kam-Young
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.6
    • /
    • pp.718-735
    • /
    • 2008
  • Park-and- Rides are intermodal transfer facilities providing a staging location for travellers to transfer between transportation modes. They are an alternative to alleviate transportation problems such as traffic congestion and air pollution in metropolitan areas. Siting Park-and-Ride facilities belongs to a kind of multi-criteria spatial decision making problems being associated with a combination of various location factors. The purpose of this paper is to provide a method and procedure to evaluate the location suitability of Park-and-Ride facilities using GIS(Geographic Information Systems). Using GIS-based suitability analysis, land value, landuse, road accessibility, public transportation accessibility, possibility to intercept automobile trips, distance to activity center and competition with existing facilities were evaluated as location factors. The suitabilities of individual factors were combined to produce a composite map with a specific weight scheme. Then a given number of sites with high suitability score were selected as potential facility locations and their demand were evaluated based on a commutershed with parabolic shape. The suggested method and procedure will provide useful information in determining Park-and-Ride sites and designing their structure.

  • PDF

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Thixoforging Process and the Problems of Hollow Type Metal Matrix Composite Part (중공형 금속 복합 재료 부품의 Thixoforging 공정과 문제점)

  • 이승후;허재찬;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.808-811
    • /
    • 1997
  • MMC has excellent mechanical properties in many ways in automotive industrial, and get into the spotlight as a light materials substituted for iron and steel. But the know-how about MMC research lack, MMC is expensive and difficult to apply the sound parts. Especially it is difficult to produce the hollow type parts composed with MMC. Therefore, hollow type parts of metal composites by using thixoforming process which as co-existing solidus-liquidus phase, it is very important to obtain forming condition. In this study, MMC billet producted by electro-magnetic stirring and mechanical stirring process is formed to hollow type parts of thixoforming process and inspected of suitability for application. It is optimized production condition, and applied to experiment. After variable materials were produced for thixoforming process, it were inspected of suitability for application by comparsion with mechanical properties. In this study, used materials were A357, A380 10%vol, and 20%vol SiCp, and the size of particultes were 14$\mu\textrm{m}$ and 5.5$\mu\textrm{m}$.

  • PDF

Reliability Evaluation Criteria and Multi-Stress Aging Test for Polymer Insulator (폴리머 현수애자의 신뢰성 평가 및 복합가속열화 방법)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.469-472
    • /
    • 2004
  • There have been numerous accelerated aging laboratory tests for evaluating suitability of polymeric materials and devices. Aging test for materials and its full scale device has been conducted, but poor correlation of aging test such as service experience were observed. Service experience plays a key role in the utility section of composite insulators. A meaningful and reliable accelerated aging test is needed for evaluating composite insulator. During the service these insulators are subjected to aging stress such as humidity, pollution, and electrical field, and erosion and tracking of the weathershed occurs. This paper presents the criteria of reliability evaluation and evaluation facilities for 22.9 kV suspension composite insulator. We adopt the criteria of reliability evaluation consist of two test methods. One is CEA tracking wheel test for examining the tracking and erosion performance of composite insulator. The other is multi-stress aging test for examining effects of environmental factors such as UV, temperature, humidity, etc on composite insulator.

  • PDF

Predicting the axial load capacity of high-strength concrete filled steel tubular columns

  • Aslani, Farhad;Uy, Brian;Tao, Zhong;Mashiri, Fidelis
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.967-993
    • /
    • 2015
  • The aim of this paper is to investigate the appropriateness of current codes of practice for predicting the axial load capacity of high-strength Concrete Filled Steel Tubular Columns (CFSTCs). Australian/New Zealand standards and other international codes of practice for composite bridges and buildings are currently being revised and will allow for the use of high-strength CFSTCs. It is therefore important to assess and modify the suitability of the section and ultimate buckling capacities models. For this purpose, available experimental results on high-strength composite columns have been assessed. The collected experimental results are compared with eight current codes of practice for rectangular CFSTCs and seven current codes of practice for circular CFSTCs. Furthermore, based on the statistical studies carried out, simplified relationships are developed to predict the section and ultimate buckling capacities of normal and high-strength short and slender rectangular and circular CFSTCs subjected to concentric loading.

Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures

  • Kumar, B. Ravi;Srimannarayana, C.H. Naga;Krishnan, K. Aniruth;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.515-520
    • /
    • 2020
  • In the modern era, the world is facing unprecedented challenges in form of environmental pollution and international agencies are forcing scientists and materialists to look for green materials and structures to counter this problem. Composites based on renewable sources like plant based fibres, vegetable fibres are finding increasing use in interior components of automobile vehicles, aircraft, and building construction. In the present study, jute and flax fibre based composites were developed and tested for assessing their suitability for possible applications in interior cabin and parts of automobile and aerospace vehicles. Matrix system involves epoxy as resin and fibre weight fractions used were 45% and 55% respectively. Composites samples were prepared as per American society for testing and materials (ASTM) standard and were tested for individual fiber tensile strength, composite tensile strength, and flexural strength to analyse its behavior under various loading conditions. The results revealed that the Jute fibre composites possess enhanced mechanical properties over Flax fibre composites.

A Fundamental Property of Concrete Containing Atomized Steel Slag Fine Aggregate after Reforming Process (개질처리한 제강슬래그 잔골재 사용 콘크리트의 성질)

  • 문한영;유정훈;박영훈;김주용;윤표호;김얼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.318-321
    • /
    • 2003
  • Steel slag is produced during steel making process. Compared with the blast furnace slag, converter slag has the expansibility due to the reaction with water and free CaO. Therefore it is specified in Standard Specification for Concrete in Korea that steel slag aggregate must not be used in concrete. In this study, atomized steel slag aggregate is conducted from converter slag by the atomizing method. Atomized steel slag and conventional converter slag are same in its composite by nature in the converter but compounds of the composite become different because of different method of slag treatment. Especially atomized steel slag aggregate overcomes expansibility that is the weak point for usage. It is researched whether it has the possibility, suitability for fine aggregate in concrete. Slump and air content are measured in fresh concrete, compressive and bending strength in hardened concrete. These is compared with control concrete with washed sand.

  • PDF

Numerical analysis of a new SMA-based seismic damper system and material characterization of two commercial NiTi-alloys

  • Olsen, J.S.;Van der Eijk, C.;Zhang, Z.L.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.137-152
    • /
    • 2008
  • The work presented in this paper includes material characterisation and an investigation of suitability in seismic dampers for two commercially available NiTi-alloys, along with a numerical analysis of a new damper system employing composite NiTi-wires. Numerical simulations of the new damper system are conducted, using Brinson's one-dimensional constitutive model for shape memory alloys, with emphasis on the system's energy dissipation capabilities. The two alloys tested showed some unwanted residual strain at temperatures higher than $A_f$, possibly due to stress concentrations near inclusions in the material. These findings show that the alloys are not ideal, but may be employed in a seismic damper if precautions are made. The numerical investigations indicate that using composite NiTi-wires in a seismic damper enhances the energy dissipation capabilities for a wider working temperature range.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.