• Title/Summary/Keyword: composite sheets

Search Result 312, Processing Time 0.025 seconds

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Synthesis and Analysis of Multi-functional Urethane Acrylate Monomer, and its Application as Curing Agent for Poly(phenylene ether)-based Substrate Material (다관능 우레탄 아크릴레이트 단량체의 합성과 분석, 및 폴리페닐렌에테르 기판소재용 경화성분으로의 적용)

  • Kim, Dong-Kook;Park, Seong-Dae;Oh, Jin-Woo;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.413-419
    • /
    • 2012
  • Multi-functional urethane acrylate monomers as the curing agent of poly(phenylene ether) (PPE) were synthesized and then the urethane bond formation was checked by FTIR spectrometry and NMR analysis. The synthesized monomers were mixed with PPE and fabricated to dielectric substrates. After forming PPE/monomer composite sheets by a film coater, several sheets were laminated to a test substrate in a vacuum laminator and then its properties depending on the type and the amount of monomers, such as dielectric constant, dielectric loss, and peel strength, were measured. Between the two different hydroxyl acrylates, when the monomer synthesized with 2-hydroxy-3-phenoxypropyl acrylate containing a phenyl group was used as a curing agent, a smaller dielectric loss was obtained and the dielectric constant and loss decreased with a decrease in the amount of the monomer. The peel strength values of the test substrates, however, did not show any specific difference between the cases of two synthesized monomers. As a result, it was obtained the polymer substrate for high frequency application having peel strength of about 10 N, low dielectric constant of 2.54, and low dielectric loss of 0.0027 at 1 GHz.

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Flexural strength properties of MoSi2 based composites (MoSi2 복합재료의 굽힘강도 특성)

  • Lee, Sang-Pill;Lee, Hyun-Uk;Lee, Jin-Kyung;Bae, Dong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.66-71
    • /
    • 2011
  • The flexural strength of $MoSi_2$ based composites reinforced with Nb sheets has been investigated, based on the detailed examination of their microstructure and fractured surface. Both sintered density and porosity of Nb/$MoSi_2$ composites were also examined. Nb/$MoSi_2$ composites were fabricated by different conditions such as temperature, applied pressure and its holding time, using a hot-press device. The volume fraction of Nb sheet in this composite system was fixed as 10%. The characterization of Nb/$MoSi_2$ composites were investigated by means of optical microscopy, scanning electron microscope and three point bending test. Nb/$MoSi_2$ composites represented a dense morphology at the interfacial region, accompanying the creation of two types of reaction layer by the chemical reaction of Nb and $MoSi_2$. Nb/$MoSi_2$ composites possessed an excellent density at the fabricating temperature of $1350^{\circ}C$, corresponded to about 95% of theoretical density. The flexural strength of Nb/$MoSi_2$ romposites were greatly affected by the pressure holding time at the same fabricating temperature, owing to the large suppression of porosity in the microstructure. Especially, Nb/$MoSi_2$ composites represented a good flexural strength of about 310 MPa at the fabricating condition of $1350^{\circ}C$, 30MPa and 60min, accompanying the pseudo-ductile fracture behavior by the deformation of Nb sheet and the interfacial delamination.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment (반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio

  • Narule, Giridhar N.;Bambole, Abhay N.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.679-687
    • /
    • 2018
  • In composite materials technology, the fiber-reinforced polymers (FRP) have opened up new horizons in infrastructural engineering field for strengthening existing structures and components of structure. The Carbon fiber reinforced polymer (CFRP) sheets are well suited for RC columns to this application because of their high strength to weight ratio, good fatigue properties and excellent resistance to corrosion. The main focus of present experimental work is to investigate effect of shapes on axial behavior of CFRP wrapped RC columns having same cross-sectional area and slenderness ratio. The CFRP volumetric ratio and percentage of steel are also adopted constant for all the test specimens. A total of 18 RC columns with slenderness ratio four were cast. Nine columns were control and the rest of nine columns were strengthened with one layer of CFRP wrap having 35 mm of corner radius. Columns confined with CFRP wrap were designed using IS: 456:2000 and ACI 440.2R.08 provisions. All the test specimens were loaded for axial compression up to failure and failure pattern for each shaped column was investigated. All the experimental results were compared with analytical values calculated as per the ACI-440.2R-08 code. The test results clearly demonstrated that the axial behavior of CFRP confined RC columns is affected with the change in shapes. The axial deformation is higher in CFRP wrapped RC circular column as compared to square and rectangular columns. Stress-strain behaviour revealed that the yield strength gained from CFRP confinement was significant for circular columns as compare to square and rectangular columns. This behaviour may be credited due to effect of shape on lateral deformation in case of CFRP wrapped circular columns at effective confinement action.

Measurement and Analysis of Conduction Noise through Microstrip Line Attached with Composite Sheets of Iron Particles and Rubber Matrix (마이크로스트립 전송선로를 이용한 순철 압분체-고무 복합재의 전도노이즈 흡수특성 측정 및 해석)

  • Kim, Sun-Tae;Oh, Byung-Ki;Kim, Sung-Soo;Cho, Han-Sin;Lee, Jae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.174-179
    • /
    • 2004
  • Attenuation of conduction noise through microstrip line attached with the high lossy iron flakes-rubber composites has been investigated in GHz frequencies. Microstrip line was designed with characteristic impedance of 50 $\Omega$ and a length corresponding to the center frequency of 3 GHz. Iron flakes were fabricated by mechanical forging of spherical iron powders using an attrition mill. The fabricated microstrip line shows a ideal propagation characteristics of S$\sub$11/ < -60 dB and S$\sub$21/ = 0 dB. Attaching a noise absorbing sheet on the microstrip line, S$\sub$11/ increases to about -10 dB and S$\sub$21/ decreases to -20~-60 dB depending on the length of absorbing sheet. The calculated power loss is as high as 80% in the frequency range 2~8 GHz. It is suggested that the most critical material parameter is magnetic loss for the enhancement of noise attenuation.

A Study on the Forming Characteristic of Inner Pyramid Structure Bonded Sheet Metal (피라미드형 내부구조재를 가지는 중공형 접합판재의 성형특성에 관한 연구)

  • Kim, J.Y.;Kil, H.Y.;Cho, G.C.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.295-299
    • /
    • 2006
  • The inner-structure bonded(ISB) sheet metal is defined as a composite sheet metal which has middle layer of truss-structure between two skin sheets. The characteristics such as ultra-light weight, high rigidity, high strength, etc are required especially for automobile parts. The characteristic of ISB sheet metal depends on inner-structure pattern or method of bonding. Pyramid type of crimped expanded metal is used for inner-structure and both of resistance welding and adhesive bonding are applied to make a specimen. As a result of compression test, it is appeared that forming limit is 10% reduction in thickness under a load of 8kgf per unit element(one inner-structure). In case of uniaxial tensile test the non-uniform surface integrity rather than the buckling of inner-structure happened at a load of 450kgf, which indicates elongation of 7.2% and thickness reduction of 13%. The eye-inspection method was applied to examine the defects occurring on the specimen during stretch forming. In case of biaxial stretch forming only the non-uniform deformation on the surface of a skin sheet could be observed. The forming limit in stretching of ISB sheet metal with the hemi-spherical punch of 150mm in diameter was 3mm in forming depth and 5% reduction in thickness.

  • PDF

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.