• Title/Summary/Keyword: composite resins

Search Result 453, Processing Time 0.023 seconds

Restoration of Damaged Anterior Teeth with Incremental Technique and Composite Resin: Case Reports (Incremental Technique과 Composite Resin을 이용한 손상된 전치부 수복: Case Reports)

  • Kim, Hyo-Jun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • Direct bonded restoration with composite resin is one of the few areas which the achievement and result are available in chair side. Especially free-hand bonding technique and incremental technique give us challengeable opportunity for restoring severely damaged anterior teeth. If clinicians have keen sense of observation to evaluate polychromatic characteristics of natural teeth, hue, chroma, value, translucency, opacity and correlate the observation result with various kinds of composite resins, they will have privilege to share joy from restoring damaged anterior teeth in chair side immediately.

  • PDF

A STUDY ON THE EFFECTS OF THE TEMPERATURE AND HUMIDITY TO THE TENSILE BOND STRENGTH BETWEEN GLASS-IONOMER CEMENT AND COMPOSITE RESIN (온도 및 습도가 Glass-ionomer cement와 Composite resin의 접착강도에 미치는 변화에 관한 연구)

  • Chung, Inn-Gyo;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.60-73
    • /
    • 1991
  • The purpose of this study is to evaluate the effects of etching time, environmental temperature and humidity on the adhesion of composite resin to glass-ionomer cement. Two chemical cure composite resins (Clearfil F II and Microrest AP) and two glass-ionomer cements (Fuji ionomer Type I and KET AC-CEM) were used as the experimental materials. The experiment is performed in 3 stages: The first stage is to bond composite resins to glass-ionomer cements, and the surface was not etched, and etched for 20 seconds, 40 seconds, and 60 seconds. Then specimens are stored in distilled water at $37^{\circ}C$ for 24 hours to measure tensile strength. The second stage is to choose the one group that had the highest tensile strength from the first stage and prepare two experimental groups: One group with composite resin bonded to glass-ionomer cement without etching and bonding agent application and the other with composite resin bonded to glass-ionomer cement with etching but without any bonding agent application. The specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and tensile strength is measured. The third stage is to choose group that had the highest tensile strength from the first stage experiment, and bond composite resin to glass-ionomer cement at $24^{\circ}C$ 44%, $30^{\circ}C$ 44%, $30^{\circ}C$ 80%, and $32^{\circ}C$ 92%. The storage time of specimens is to bond immediately after storage, then changed to 30 sec., 60 sec., and 120 sec.. Specimens are stored in distilled water at $37^{\circ}C$ for 24 hours and their tensile strength are measured again. The following results were obtained: 1. As the etching time increases, the tensile bond strength between glass-ionomer cement and composite resin increase, and the tensile bond strength is the highest when acid etched for 60 minutes (P < 0.05). 2. After acid etching for 60 minutes, the tensile strength of the group with bonding agent was stronger than that without bonding agent application (P < 0.05). 3. The tensile strength of Clearfil F II was stronger than that of Microrest AP. 4. It was observed that the tensile bond strength is not affected by different storage time with different temperature and humidity. 5. As the humidity was increased, the tensile bond strength between glass-ionomer cement and composite resin decreased (P < 0.05).

  • PDF

IN VITRO STUDY ON MARGINAL LEAKAGE OF COMPOSITE RESIN INLAY RESTORATIONS (광중합 복합레진 INLAY 수복물의 변연누출에 관한 실험적 연구)

  • Yoo, Je-Kug;Bae, Jeong-Sik;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.26 no.1
    • /
    • pp.85-98
    • /
    • 1988
  • The primary aim of this study was to access the degree of marginal leakage in composite resin inlay restorations. Class V cavities were prepared on sixty extracted premolars. They were classified as control group and experimental group 1, 2 and each group was filled with BIS-FIL $I^{(R)}$ and $Silux^{(R)}$ composite resins. In the control group, the composite resin was inserted directly, the experimental group 2 was inserted as composite resin inlay after heat treatment on $125^{\circ}C$, 10 minutes. Then thermocycling was performed 1000 times. After staining with 1% Basic Fuchsin, they were cut in Buccolingual direction and the degree of penetration of the dye was examined under L/M. The following results were obtained : 1. In occlusal margin area, difference in marginal leakage was not observed in all groups. 2. In gingival margin area, cavities filled with composite resin inlay was less marginal leakage than filled directly in BIS-FIL $I^{(R)}$ group, and statistical significant difference was not existed in $Silux^{(R)}$ group. 3. The statistical significance was not existed between composite resin inlay and composite resin inlay heated secondarily. 4. In all groups, gingival margin area reveals more marginal leakage than occlusal margin area and statistical significance was existed.

  • PDF

A 3-year retrospective study of clinical durability of bulk-filled resin composite restorations

  • Muhittin Ugurlu;Fatmanur Sari
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.5.1-5.11
    • /
    • 2022
  • Objectives: This study aimed to assess the clinical longevity of a bulk-fill resin composite in Class II restorations for 3-year. Materials and Methods: Patient record files acquired from the 40 patients who were treated due to needed 2 similar sizes Class II composite restorations were used for this retrospective study. In the experimental cavity, the flowable resin composite SDR was inserted in the dentinal part as a 4 mm intermediate layer. A 2 mm coverage layer with a nano-hybrid resin composite (CeramX) was placed on SDR. The control restoration was performed by an incremental technique of 2 mm using the nano-hybrid resin composite. The restorations were blindly assessed by 2 calibrated examiners using modified United States Public Health Service criteria at baseline and 1, 2, and 3 years. The data were analyzed using non-parametric tests (p = 0.05). Results: Eighty Class II restorations were evaluated. After 3-years, 4 restorations (5%) failed, 1 SDR + CeramX, and 3 CeramX restorations. The annual failure rate (AFR) of the restorations was 1.7%. The SDR + CeramX group revealed an AFR of 0.8%, and the CeramX group an AFR of 2.5% (p > 0.05). Regarding anatomical form and marginal adaptation, significant alterations were observed in the CeramX group after 3-years (p < 0.05). The changes in the color match were observed in each group over time (p < 0.05). Conclusions: The use of SDR demonstrated good clinical durability in deep Class II resin composite restorations.

Thermal Properties of DGEBHA/MDA/SN/zeolite System Degraded by Moisture Absorption

  • Kim, You-Jeong;Lee, Hong-Ki;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.479-482
    • /
    • 1999
  • Cured epoxy resins are extensively used for the electrical insulation in high-voltage equipments. The bisphenol A-based epoxy resins lured with azine show, especially, good thermal properties and mechanical resistances. For the technical and economic reasons, varing amount of inorganic fillers are added to endow the required special properties. In the large generators and motors of power plants, epoxy insulation is disclosed to the harsh conditions like the superheated steam and abrupt temperature variation. Hygrothermal aging at elevated temperatures tends to induce degradation in epoxy resins. To predict the effect of this degradation in DGEBA/MDA/SN/zeolite system, we proceeded the forced moisture absorption experiment using the autoclave. The thermal properties of the untreated and treated specimens were analyzed by DSC and TGA under the nitrogen flowing condition. The moisture absorption results showed a weight increase during hygrothermal aging at 1207. At the initial aging period, the system leaded to more or less postcuring but more prolonged environmental aging leaded the discoloration of specimen and lowering the T$_{g}$./.

  • PDF

CHEMICAL DEGRADATION OF LIGHT CURED COMPOSITE RESINS IN NAOH SOLUTION (NaOH 용액내에서의 광중합형 복합레진의 화학적 분해)

  • Kim, Jung-Ran;Jeong, Byung-Cho;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.469-477
    • /
    • 2002
  • One of the major deficiencies of composite restorative resins is their insufficient resistance to wear. Of the multitude of factors that have been associated with wear, subsurface degradation within the restoration is considered to be one. The aim of this study was to evaluate the resistance to degradation of four commercial composite resins in an alkaline solution. The brands studied were Z100(3M), Clearfil AP-X(Kuraray), Tetric Ceram(Vivadent), Aelit flo(Bisco). Resistance to degradation was evaluated on the basis of the following parameters: (a) mass loss(%) - determined from pre-and post-exposure specimen weights: (b) Si loss(ppm) - obtained from ICP-AE analysis of solution exposed to specimens; and (c) degradation depth(${\mu}m$) - measured microscopically (SEM) from polished circular sections of exposed specimens. The results were as follows: 1. The sequence of the mass loss was in ascending order by AE, EL, TC, Z100. There was statistically significant difference of mass loss between AE, CL group and TC, Z100 group(p<0.05). 2. The sequence of the degree of degradation layer depth was in ascending order by AE, CL, TC, Z100. But there was no statistically significant difference of degree of degradation layer depth between AE and CL(p<0.05). 3. For the Si concentration, Z100 was the highest of all. 4. The correlation coefficient between mass loss and degradation depth was relatively high(r=0.71 p<0.05).

  • PDF

Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al2O3 Nanoparticles

  • Zhu, Lin;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2513-2516
    • /
    • 2012
  • This study examined the effects of the epoxidized castor oil (ECO) and $Al_2O_3$ content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/$Al_2O_3$ ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and $Al_2O_3$ nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and $Al_2O_3$ nanoparticles. The composite containing 3 wt % $Al_2O_3$ nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/$Al_2O_3$ composites, which prevented deformation and crack propagation.

Relationship between Stiffness of Restorative Material and Stress Distribution for Notch-shaped Non-carious Cervical Lesions

  • Kim, Kwang-Hoon;Park, Jeong-Kil;Son, Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.64-67
    • /
    • 2008
  • This study investigated the influence of composite resins with different elastic moduli and occlusal loading conditions on the stress distribution of restored notch-shaped non-carious cervical lesions (NCCL) using 3D finite element analysis. Two different materials, Tetric Flow and Z100, were used as representative flowable hybrid resins for the restoration of NCCL. A static point load of 500 N was applied at the buccal and palatal cusps. The ratios of stress reduction to energy dissipation were better in the compressive state than the tensile state regardless of the restorative material. The total dissipation ratios for Tetric Flow were 1.5% and 4.2% larger than those for Z100 under compression and tension, respectively. Therefore, tensile stress poses more of a risk for tooth fracture, and Tetric Flow is a more appropriate material for restoration.

Marginal Leakage Test on 'Vivadent' Composite Resin (Vivadent의 변연누출에 관한 실험적 연구)

  • Kwon, Hyuk-Choon
    • The Journal of the Korean dental association
    • /
    • v.23 no.12 s.199
    • /
    • pp.1031-1037
    • /
    • 1985
  • The purpose of this study was to evaluate the marginal sealing ability of 'vivadent.' Using freshly extracted human teeth and 2% aqueous methylene blue, the marginal leakage of dye in restorative materials such as vivadent with acid etching technique, Durafill with acid etching technique, silar with acid etching technique, Adaptic, and Amalgam were investigated at 37℃ and under temperature cycling in range of 4℃-60℃. The results were as follows; 1. All filling materials showed some degree of marginal penetration by 2% methylene blue dye. 2. Vivadent with acid etching technique revealed effective marginal sealing ability, but under temperature cycling it showed increased marginal leakage. 3. All resins showed greater marginal leakage than amalgam restoration. 4. Vivadent had the most effective marginal sealing ability in experimented resins.

  • PDF

The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

  • Lee, In-Su;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.479-484
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS. Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ${\times}20$ magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (${\alpha}$=.05). RESULTS. Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION. The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin.