DOI QR코드

DOI QR Code

Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al2O3 Nanoparticles

  • Zhu, Lin (School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology) ;
  • Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2012.03.08
  • Accepted : 2012.04.29
  • Published : 2012.08.20

Abstract

This study examined the effects of the epoxidized castor oil (ECO) and $Al_2O_3$ content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/$Al_2O_3$ ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and $Al_2O_3$ nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and $Al_2O_3$ nanoparticles. The composite containing 3 wt % $Al_2O_3$ nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/$Al_2O_3$ composites, which prevented deformation and crack propagation.

Keywords

References

  1. Bauer R. S. Epoxy Resin Chemistry, Advanced in Chemistry Series, No. 114; American Chemical Society: Washington DC, 1979; p 1.
  2. Oyanguren, P. A.; Galante, M. J.; Andromaquel, K.; Frontini, P. M.; Williams, R. J. J. Polymer 1999, 40, 5249. https://doi.org/10.1016/S0032-3861(98)00742-3
  3. Heo, G. Y.; Seo, M. K.; Oh, S. Y.; Choi, K. E.; Park, S. J. Carbon Lett. 2011, 12, 53. https://doi.org/10.5714/CL.2011.12.1.053
  4. Serrano, E.; Tercjak, A.; Kortaberria, G.; Pomposo, J. A.; Mecerreyes, D.; Zafeiropoulos, N. E.; Stamm, M.; Mondragon, I. Macromolecules 2006, 39, 2254. https://doi.org/10.1021/ma0515477
  5. Xue, S.; Reinholdt, M.; Pinnavaia, T. J. Polymer 2006, 47, 3344. https://doi.org/10.1016/j.polymer.2006.03.036
  6. Kim, M. T.; Rhee, K. Y. Carbon Lett. 2011, 12, 177. https://doi.org/10.5714/CL.2011.12.3.177
  7. Ratna, D.; Becker, O.; Krishnamurthy, R.; Simon, G. P.; Varley, R. J. Polymer 2003, 44, 7449. https://doi.org/10.1016/j.polymer.2003.08.035
  8. Li, H.; Zhang, Z.; Ma, X.; Hu, M.; Wang, X.; Fan, P. Surf. Coat. Tech. 2007, 201, 5269. https://doi.org/10.1016/j.surfcoat.2006.07.143
  9. Chen, J. L.; Jin, F. L.; Park, S. J. Macromol. Res. 2010, 18, 862. https://doi.org/10.1007/s13233-010-0911-4
  10. Jin, F. L.; Park, S. J. Polym. Int. 2008, 57, 577. https://doi.org/10.1002/pi.2280
  11. Jin, F. L.; Park, S. J. Mater. Sci. Eng. A 2008, 478, 402. https://doi.org/10.1016/j.msea.2007.05.053
  12. Lehrle, R. S.; Williams, R. J. Macromolecules 1994, 27, 3782. https://doi.org/10.1021/ma00092a017
  13. Jin, F. L.; Park, S. J. Bull. Korean Chem. Soc. 2009, 30, 334. https://doi.org/10.5012/bkcs.2009.30.2.334
  14. Grishchuk, S.; Mbhele, Z.; Schmitt, S.; Karger-Kocsis, J. Exp. Polym. Lett. 2011, 5, 273. https://doi.org/10.3144/expresspolymlett.2011.27
  15. Jin, F. L.; Park, S. J. Bull. Korean Chem. Soc. 2009, 30, 2643. https://doi.org/10.5012/bkcs.2009.30.11.2643
  16. Chen, C. H.; Jian, J. Y.; Yen, F. S. Composites: Part A 2009, 40, 463. https://doi.org/10.1016/j.compositesa.2009.01.010
  17. Park, S. J.; Jin, F. L.; Lee, J. R. Macromol. Chem. Phys. 2004, 205, 2048. https://doi.org/10.1002/macp.200400214
  18. Jin, F. L.; Park, S. J. Mater. Sci. Eng. A 2011, 528, 8517. https://doi.org/10.1016/j.msea.2011.08.054
  19. Lee, J.; Bhattacharyya, D.; Zhang, M. Q.; Yuan, Y. C. Exp. Polym. Lett. 2011, 5, 246. https://doi.org/10.3144/expresspolymlett.2011.24
  20. Jin, F. L.; Park, S. J. Polym. Degrad. Stab. 2007, 92, 509. https://doi.org/10.1016/j.polymdegradstab.2006.04.007
  21. Wang, R.; Gao, B.; Zhang, Y.; Chen, L. J. Appl. Polym. Sci. 2009, 113, 41. https://doi.org/10.1002/app.29846
  22. Jin, F. L.; Park, S. J. Mater. Sci. Eng. A 2008, 475, 190. https://doi.org/10.1016/j.msea.2007.04.046
  23. Jin, F. L.; Park, S. J. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 3348. https://doi.org/10.1002/polb.20990
  24. McGrath, L. M.; Parnas, R. S.; King, S. H.; Schroeder, J. L. Polymer 2008, 49, 999. https://doi.org/10.1016/j.polymer.2007.12.014
  25. Omrani, A.; Rostami, A. A. Mater. Sci. Eng. A 2009, 517, 185. https://doi.org/10.1016/j.msea.2009.03.076
  26. Lim, S. H.; Zeng, K. Y.; He, C. B. Mater. Sci. Eng. A 2010, 527, 5670. https://doi.org/10.1016/j.msea.2010.05.038

Cited by

  1. A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives vol.25, pp.5, 2014, https://doi.org/10.14478/ace.2014.1079
  2. Influence of Fiber Array Direction on Mechanical Interfacial Properties of Basalt Fiber-reinforced Composites vol.39, pp.2, 2015, https://doi.org/10.7317/pk.2015.39.2.219
  3. Preparation of Cu nanoparticles by a pulsed wire evaporation process for conductive ink applications vol.42, pp.2, 2019, https://doi.org/10.1007/s12034-018-1725-9
  4. Flexural Properties and Electrical Conductivity of Epoxy Resin/Carbon Fiber Cloth/Metallic Powder Composites vol.27, pp.1, 2019, https://doi.org/10.1007/s13233-019-7006-7
  5. Polymer matrices for carbon fiber-reinforced polymer composites vol.14, pp.2, 2012, https://doi.org/10.5714/cl.2013.14.2.076
  6. Preparation and Characterization of PAN-based Superfined Carbon Fibers for Carbon-paper Applications vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3733
  7. Mechanical and electrical properties of epoxy resin/epoxidized castor oil/carbon fiber cloth composites vol.22, pp.None, 2012, https://doi.org/10.5714/cl.2017.22.105
  8. Effect of Surface Modification on Thermal Stability, Flexural Properties, and Impact Strength of Epoxy/Graphene Nanocomposites vol.40, pp.10, 2019, https://doi.org/10.1002/bkcs.11858
  9. Significant enhancement of fracture toughness and mechanical properties of epoxy resin using CTBN‐grafted epoxidized linseed oil vol.137, pp.2, 2020, https://doi.org/10.1002/app.48276