• Title/Summary/Keyword: composite precast concrete

Search Result 200, Processing Time 0.031 seconds

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Influence of post-pouring joint on long-term performance of steel-concrete composite beam

  • Huang, Dunwen;Wei, Jun;Liu, Xiaochun;Zhang, Shizhuo;Chen, Tao
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • The concrete bridge decks are usually precast and in-situ assembled with steel girders with post-pouring joint in the construction practice of super-wide steel-concrete composite beam. But the difference of concrete age between the precast slabs and the post-pouring joint has been not yet considered for the long-term performance analysis of this kind composite beam. A simply supported precast-assembled T-shaped beam was taken as an example to analyze the long-term performance of steel-concrete composite beam with post-pouring joint. Based on the deformation coordination conditions of the old-new concrete deck and steel girder, a theoretical model for the long-term behavior of precast-assembled composite beam is proposed in this paper according to age-adjusted effective modulus method. Then, the feasibility of the proposed model is verified by the available test data from the Gilbert's composite beams. Parametric studies were preformed to evaluate the influences of the cross-sectional area ratio of the post-pouring joint to the whole bridge deck, as well as the difference of concrete age between the precast slabs and the post-pouring joint, on the long-term performance of the composite beam. The results indicate that the traditional method without considering the age difference would seriously underestimate the effect of creep and shrinkage of concrete bridge decks. The concrete age difference between the precast slabs and the post-pouring joint should be demonstrated for the life cycle design and long-term performance analysis of precast-assembled steel-concrete composite beams.

A Basic Study of the Calculation Model for Shear Connectors of Composite Precast Concrete Beams (합성 PC 보를 위한 전단 보강 계산 모형 기초 연구)

  • Lim, Chaeyeon;Lee, Dong Hoon;Kim, Sun Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Green Frame is a column-beam system constructed by composite precast column and beam connected by embedded steel of their. From when the precast concrete beam of Green Frame is installed, until the concrete of slab and connection joint is cured, the self load of beam shall be supported by the embedded steel of it. Therefore, the concrete of beam could be separated from the embedded steel if the shear connector of beam of Green Frame is designed by the code on Structural standard. So, this study suggest an equation for the shear connection of composite precast concrete beams of Green Frame. The result of this study will be used as the main equation of the calculation model for shear connectors of composite precast concrete beams.

  • PDF

A Study on the Economical Analysis of the Composite Precast Concrete Method (프리캐스트 콘크리트 복합화공법의 경제성 분석에 관한 연구)

  • Yoo, Dae-Ho;Lee, Han-Bok;Ahn, Jae-Cheol;Kang, Byeung-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.113-118
    • /
    • 2007
  • In this study, we select a site adopting real composite precast concrete method. Estimating real construction cost and imaginary cost appling reinforced concrete method in the site, we compare the costs. Through using high intensity concrete and prestressed concrete, amount of concrete is reduced more than 50% but there isn't big gap in material cost. In the main construction cost of composite precast concrete method, the material cost with production cost and transportation cost are in that, joints and topping concrete are account for 90%. But in case of reinforced concrete, labor cost spent at concrete steel bar and form is account for 30%. In the cost of attached, compared with composite precast concrete method, the reinforced concrete method taken in big portion by temporary work and scaffolding is twice as much as composite precast concrete method in construction cost. Therefore, economic efficiency is excellent reducing 11% total cost of composite precast concrete method from the reinforced concrete method.

  • PDF

Flexural Strength Estimation of Half-Depth Precast Concrete Composite Slab Manufactured by the Long-Line Method (롱라인 공법으로 제작한 반단면 프리캐스트 콘크리트 합성 슬래브의 휨강도 평가)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.48-56
    • /
    • 2013
  • Prestressed concrete (PSC) members are readly available in civil engineering applications due to the convenience of construction and easy of quality control in the manufacturing process of the member. Especially, half-depth precast concrete composite slab, which is one of the PSC flexural members is developed recently using the long-line method. The half-depth precast concrete composite slabs are composed of the precast concrete and the in-situ concrete placed at the site. In this paper, we present the results of experimental investigations pertaining to the pretensioning efficiency and the flexural behavior of half-depth precast concrete composite slab which is made of precast PSC manufactured by the long-line method. In the long-line method, the pretensioned precast member is manufactured simultaneously, by tensioning tendons at once. In addition, we suggest the equation that can estimate the flexural strength of half-depth precast concrete composite slab reasonably by considering the effects of rebar embedded in the precast PSC flexural member.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

A Basic Study on the Arrangement of In-situ Production Module of the Composite PC Members (합성 PC 부재 현장생산배치에 관한 기초 연구)

  • Lee, Goon-Jae;Joo, Jin-Kyu;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.29-30
    • /
    • 2011
  • A Green Frame is a composite Rahmen precast concrete structure that utilizes the advantages of the steel frame and the reinforced concrete. Compared to bearing wall structure, the precast concrete structure may raise construction cost If the precast concrete members are produced in plant. Thus, if the precast concrete members can be produced in site, the cost-effectiveness and quality shall be increased. Various site conditions must be considered and reviewed to ensure a space for the in-situ production. Therefore, this study focuses on the basic study on the arrangement of in-situ production module of composite precast concrete members.

  • PDF

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Fatigue Performance of Precast FRP-Concrete Composite Deck with Long Span (장지간 프리캐스트 FRP-콘크리트 합성 바닥판의 피로 성능)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.45-46
    • /
    • 2010
  • Fatigue performance of a precast FRP-concrete composite deck with long span economically applicable to a cable-stayed bridge was evaluated. From the experiment, it is verified that the precast FRP-concrete composite deck has sufficient fatigue performance.

  • PDF

In-situ Production Analysis of Composite Precast Concrete Members of Green Frame

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.501-514
    • /
    • 2011
  • Recently, there have been many cases in which the difficulty of repair and replacement of principal elements in the bearing wall structure for apartment buildings, which is a major part of apartment buildings in Korea, has led to the reconstruction of buildings rather than their remodeling. To address this problem, the Korea government now allows a floor area ratio of up to 20 %, and has relaxed the building height limits to encourage the use of a rahmen structure instead of a bearing wall structure. However, since reinforced concrete rahmen structures have many problems, including higher floor height and greater construction cost, a great deal of research into rahmen composite precast concrete structures have been conducted. Green Frame, one of the developed prototypes, is expected to provide economic benefits through in-situ production for precast concrete column and beam. For in-situ production of composite precast concrete members, a detailed plan for production, curing, and installation is needed. However, it needs to be confirmed that the space is sufficient to produce the precast concrete members on-site before planning those activities. Therefore, this study proposes in-situ production analysis of composite precast concrete members of Green Frame with the evaluation of structural safety and available area on the parking structure. The result of this study shows that the in-situ production of precast concrete members is possible through a case study.