• 제목/요약/키워드: composite panels

검색결과 387건 처리시간 0.022초

등분포하중에 종속된 폼내장 콘크리트 샌드위치패널의 유한변위거동 (Large Displacement Behaviors of Foam-Insulated Concrete Sandwich Panels Subjected to Uniform Pressure)

  • 강준석;원덕희;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제2권4호
    • /
    • pp.35-43
    • /
    • 2011
  • 본 연구는 등분포 하중에 종속된 폼내장 콘크리트 샌드위치 패널 (foam insulated concrete sandwich panel)의 구조거동특성을 파악하였다. 유한요소모델이 콘크리트, 폼 그리고 철근의 비선형거동과 연결부재 (connector)의 상세 전단저항거동을 모사하기위해 사용되었다. 개발된 모델은 미주리대학 (University of Missouri)에서 수행된 정적실험자료를 사용하여 검증되었다. 합성 및 비합성 거동이 샌드위치패널의 구조거동에 미치는 영향을 정확히 모사하기 위해 전단연결재의 저항력을 모델에 정확히 반영하는 것이 중요하다. 본 연구에서 개발된 모델은 구조물의 극한강도 및 좌굴이후의 거동까지 모사하였고 미국콘크리트 학회 (ACI)의 설계예제와 비교하였다. 본연구의 결과는 정적 및 동적하중에 종속된 폼내장 콘크리트 샌드위치 패널의 해석및 설계에 유용한 정보를 제공할 것이다.

목재파티클과 재생폴리프로필렌을 이용한 복합패널 제조 및 물성에 관한 연구 (Physical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polypropylene)

  • 한태형;신랑호;권진헌
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권6호통권134호
    • /
    • pp.46-54
    • /
    • 2005
  • 목재파티클의 크기(1/32",1/4",1/2")와 재생폴리프로필렌의 혼합비율(10%, 30%, 50%, 70%)을 달리하여 복합패널을 제조하고 물성을 조사하였다. 목재파티클의 혼합비율이 증가함에 따라 밀도가 다소 증가하였으며, 같은 혼합비율에서 목재파티클이 클수록 밀도가 감소하는 경향을 나타냈다. 흡수두께팽창률과 수분흡수율은 재생폴리프로필렌의 혼합비율이 증가할수록 치수안정성이 매우 우수하였다. 휨파괴계수는 재생폴리프로필렌의 혼합비율이 증가할수록 증가한 반면, 휨탄성계수는 감소하는 경향을 나타냈다. SEM 사진 관찰을 통해 재생폴리프로필렌이 용해되어 목재파티클의 조직내에 일부 침투되어 쐐기 형태의 기계적 결합과 목재파티클을 감싸 매트릭스를 형성하여 결합되어 있는 것을 관찰할 수 있었다.

합판대용(合板代用) 박판상(薄板狀) 복합재(複合材) 제조(製造)에 관(關)한 연구(硏究) (I) - 복합재(複合材) 제조(製造)의 최적조건(最適條件)에 관(關)하여 - (Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (I) - On the Optimum Manufacturing Condition of Composites -)

  • 이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.55-69
    • /
    • 1995
  • The primary objective of this research was to investigate optimum manufacturing condition of thin composite panels composed of sawdust, polyethylene film and polypropylene net. At the study the experiment was designed to make thin board in which sawdust offers effectiveness as core composing material, polyethylene as adhesive with added urea resin, and polypropylene as stiffness and flexibility in the composition panel. 100 types of thin composite panels were manufactured according to press-lam and mat-forming process of various hot pressing conditions(pressure, temperature and time). They were tested and compared with control boards on bending properties(MOR, MOE, SPL, WML), internal bond strength, thickness swelling, linear expansion and water absorption. At the same time the visual inspections of each types of panels were accomplished. The physical and mechanical properties of composite types passed by visual inspection were analyzed by Tukey's studentized range test. From the statistical analysis, the optimum manufacturing condition of thin composite panels were selected. Compared with two manufacturing processes, mat-forming process performed better than press-lam process in all tested properties. The optimum manufacturing conditions resulted from the experiment and statistical analysis were able to determine as following: the press temperature was shown the most good result at 130$^{\circ}C$ in mat forming process and 140$^{\circ}C$ press lam process, the press time 4 min in both processes, but the press pressure was 25-10kg/$cm^2$ in mat forming and 15k/$cm^2$ press lam process.

  • PDF

하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구 (A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite)

  • 이재열;신광복;이상진
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

Influence of shear bolt connections on modular precast steel-concrete composites for track support structures

  • Mirza, Olivia;Kaewunruen, Sakdirat
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.647-659
    • /
    • 2018
  • Through extensive research, there exist a new type of connection between railway bridge girders and steel-concrete composite panels. In addition to conventional shear connectors, newly developed blind bolts have been recently adopted for retrofitting. However, the body of knowledge on their influence and application to railway structures has not been thoroughly investigated. This study has thus placed a particular emphasis on the application of blind bolts on the Sydney Harbour Bridge as a feasible alternative constituent of railway track upgrading. Finite element modeling has been used to simulate the behaviours of the precast steel-concrete panels with common types of bolt connection using commercially available package, ABAQUS. The steel-concrete composite track slabs have been designed in accordance with Australian Standards AS5100. These precast steel-concrete panels are then numerically retrofitted by three types of most practical bold connections: head studded shear connector, Ajax blind bolt and Lindapter hollow bolt. The influences of bolt connections on load and stress transfers and structural behaviour of the composite track slabs are highlighted in this paper. The numerical results exhibit that all three bolts can distribute stresses effectively and can be installed on the bridge girder. However, it is also found that Lindapter hollow bolts are superior in minimising structural responses of the composite track slabs to train loading.

하이브리드 복합재 샌드위치 패널로 구성된 전구조 복합재 위성의 랜덤진동 특성 평가 (Random Vibration Characteristics of a Whole Structure Composite Satellite Having Hybrid Composite Sandwich Panels)

  • 조희근;이주훈
    • 한국항공우주학회지
    • /
    • 제38권8호
    • /
    • pp.798-805
    • /
    • 2010
  • 전구조 소형 복합재 위성인 과학기술위성 3호가 국내 최초로 개발되었다. 과학기술위성 3호는 기존의 위성과 달리 알루미늄 프레임이 없는 구조로 되어있으며 알루미늄 코어에 적층복합재 스킨을 가진 샌드위치 패널의 조합으로 구성되었다. 이 복합재 패널의 결합으로 구성된 격자형태의 공간에 다수의 전장박스와 탑재체 및 장치들이 장착된다. 본 연구는 과학기술위성 3호의 랜덤진동 응답에 관한 연구이며 이를 위하여 FEA 해석과 시험이 수행 되었다. 진동시험 결과와 전산해석결과를 서로 상호 비교 검토함으로써 위성의 진동 특성을 규명하고 결과의 신뢰성을 검증하였다.

구조용단열패널의 정적가력과 반복가력 성능 평가 (Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels)

  • 나환선;이현주;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제4권1호
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

직각 흡음체 설치 경량방음터널의 토출소음 저감효과 분석 (Analysis of Reduction Effect on Noise Discharge from Lightweight Soundproof Tunnels Installed with Lateral Sound-absorbing Panels)

  • 정영도;안동욱;노명현
    • 복합신소재구조학회 논문집
    • /
    • 제7권1호
    • /
    • pp.19-24
    • /
    • 2016
  • Most of the soundproof tunnels generate significant discharge noise through their inlets and outlets so that the length of the tunnel has been extended frequently than required to minimize the effect on such discharge noise. Thus, in this paper, we investigate reduction capability of discharge noise from the sound proof tunnel installed with lateral sound-absorbing panels on the partitioned truss members in the longitudinal direction of the tunnel. In conclusion, noise field analysis results shows that the sound proof tunnels with lateral sound-absorbing panels have an effect on discharge noise abatement and thereby tunnel's length reduction.

Wave propagation in spherical and cylindrical panels reinforced with carbon nanotubes

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.133-141
    • /
    • 2023
  • Based on the third-order shear deformation theory, the wave propagations in doubly curved spherical- and cylindrical- panels reinforced by carbon nanotubes (CNTs) are firstly investigated in present work. The coupled equations of wave propagation for the carbon nanotubes reinforced composite (CNTRC) doubly curved panels are established. Then, combined with the harmonic balance method, the eigenvalue technique is adopted to simulate the velocity-wave number curves of the CNTRC doubly curved panels. In the end, numerical results are showed to discuss the effects of the impact of key parameters including the volume fraction, different shell types (including spherical (R1=R2=R) and cylindrical (R1=R, R2=→∞)), wave number as well as modal number on the sensitivity of elastic waves propagating in CNTRC doubly curved shells.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.