• Title/Summary/Keyword: composite fiber

Search Result 3,639, Processing Time 0.032 seconds

Behavior of self-compacting recycled concrete filled aluminum tubular columns under concentric compressive load

  • Yasin Onuralp Ozkilic;Emrah Madenci;Walid Mansour;I.A. Sharaky;Sabry Fayed
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.243-260
    • /
    • 2024
  • Thirteen self-compacting recycled concrete filled aluminium tubular (SCRCFAT) columns were tested under concentric compression loads. The effects of the replacement ratio of the recycled concrete aggregate (RCA) and steel fibre (SF) reinforcement on the structural performance of the SCRCFAT columns were studied. A control specimen (C000) was cast with normal concrete without SF to be reference for comparison. Twelve columns were cast using RCA, six columns were cast using concrete incorporating 2% SF while the rest of columns were cast without SF. Failure mode, ductility, ultimate load capacity, axial deformation, ultimate strains, stress-strain response, and stiffness of the SCRCFAT columns were studied. The results showed that, the peak load of tested SCRCFAT columns incorporating 5-100 % RCA without SF reduced by 2.33-11.28 % compared to that of C000. Conversely, the peak load of tested SCRCFAT columns incorporating 5-100% RCA in addition to 2% SF increased by 21.1-40.25%, compared to C000. Consequently, the ultimate axial deformation (Δ) of column C100 (RCA=100% and SF 0%) increased by about 118.9 % compared to C000. The addition of 2% SF to the concrete mix decreased the axial deformation of SCRCFAT columns compared to those cast with 0% SF. Moreover, the stiffness of the columns cast without SF decreased as the RCA % increased. In contrast, the columns stiffness cast with 2% SF increased by 26.28-89.7 % over that of C000. Finally, a theoretical model was proposed to predict the ultimate loads tested SCRCFAT columns and the obtained theoretical results agreed well with the experimental results.

EVALUATION OF RADIOPACITY AND DISCRIMINABILITY OF VARIOUS FIBER REINFORCED COMPOSITE POSTS (수종의 섬유 강화 레진 포스트의 방사선 불투과도와 식별도 평가)

  • Lee, Eun-Hye;Choi, Hang-Moon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.188-197
    • /
    • 2010
  • The purpose of this study was to compare radiopacity and radiographic discriminability of various FRC-Posts. Six FRC-Posts were investigated ; 1) FRC Postec Plus (Ivoclar Vivadent AG, Schaan, Liechtenstein), 2) Snowlight (Carbotech, Lewis center, OH, USA), 3) Dentin Post (Komet Brasseler, Lamgo, Germany), 4) Rely-X Fiber Post (3M ESPE, St.paul, MN, USA), 5) D.T.-Light Post (BISCO, Schaumburg, IL,USA), 6) Luxapost (DMG, Hamburg, Germany) The radiographs of each post with a reference 1 mm / 2 mm aluminum step-wedge was taken using digital sensor. The optical density were calculated by gray value of $10{\times}10$ pixel and compared in mm Al equivalent at five points. Six maxillary incisors of similar radiopacity were used. Radiographs of posts in Mx. incisors of lingual side of dry mandible were taken. We showed radiographs and asked the questionnaire to 3 radiologists, 3 endodontists, 3 general practitioners. The questionnaire was comprised of choices of the highest, lowest radiopaque individual post and the choices of best discriminable post at apical, coronal area. The following results were obtained. 1. Each post system showed various radiopacity. 2. There was change of discriminability between each post and simulated specimens regardless of examiner. Although each post showed various radiopacity, the difference of radiopacity did not affect on discriminability.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Study Development of Salad Dressing with Added Sea Tangle($Laminaria$ $japonica$) (다시마를 이용한 샐러드 드레싱 제조의 품질 특성)

  • Jung, Hyeon-A;Kim, An-Na;Ahn, Eun-Mi;Park, Suk-Hyeon;Kim, Min-Ji;Yoo, Yun-Jung;Lee, You-Rim
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.520-527
    • /
    • 2011
  • This study was conducted to develop a novel salad dressing composite recipe of natural seasoning containing the dried sea tangle($Laminaria$ $japonica$) that has a high preference. Sea tangle($Laminaria$ $japonica$) is included in the vitamins and minerals, magnesium, calcium, iodine, iron content, such as high, and contained in Sea tangle alginate is not a small conference known as dietary fiber. To manufacture salad dressing with sea tangle, dressing with 0%, 3%, 6%, 9%, and 12% added sea tangle were prepared and tested for quality. The pH tended to increase with the increased sea tangle in addition but in contrast, acidity showed. The 'L' color decreased with added sea tangle, whereas the 'a' and 'b' values increased. Brix measurements increase with added sea tangle. The strength texture results, 0% was the highest, lowest 9%. Bitterness and chewiness texture results, 9% was the highest, lowest 0%. According to the sensory test results, in the topic overall quality 3% was by 3.76 point the highest. But, during total nine clause, in clause six, by 6% was the highest.

Flexural Performance of Slabs Strengthened by Fiber-Reinforced Polymer Sheet with Hydrophilic Epoxy (친수성 에폭시를 사용하여 FRP 시트로 보강된 슬래브의 휨거동 평가)

  • Ju, Hyunjin;Han, Sun-Jin;Cho, Hae-Chang;Lee, Deuck Hang;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, the hydrophilic chemical grout using silanol (HCGS) was introduced to overcome the limitations of conventional epoxy resin which have been used for strengthening reinforced concrete (RC) structures. Then, flexural tests on the RC slabs strengthened by FRP sheets were conducted. Three slab specimens were tested in this study; a control specimen with no strengthening, and two specimens strengthened by a typical epoxy resin or HCGS, respectively, as a binder between the slabs and the FRP sheets. In addition, an analytical model was developed to evaluate the flexural behavior of strengthened slab members, considering the horizontal shear force at the interface between concrete slabs and FRP sheets. The analysis results obtained from the proposed model indicated that the strengthened specimens showed fully composite behavior before their flexural failure. Especially, the specimen strengthened by HCGS, which can overcome the limitations of conventional epoxy resin, showed a similar flexural performance with that strengthened by a conventional epoxy resin.

Field Application of 80MPa High Strength Fire Resistant Concrete using Ternary Blended Cement (설계강도 80MPa 3성분계 고강도내화콘크리트의 현장적용 및 성과분석)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.113-119
    • /
    • 2010
  • Fire resistance and field tests for high-strength concrete(HSC) of 80MPa were carried out to evaluate whether or not it shows the same material properties even in the field condition of being mass-produced and supplied. As a result, it was found that fire resistant HSCs containing composite fiber(NY, PP) of 0.075% have great resistance to fire and spalling. In the field test, before the pumping air contents, slump flow, U-box, L-flow, compressive strength, gap of hydration temperature of interior and exterior of specimen and placing ratio per hour satisfied the required properties of HSC. However, after the pumping of HSC, as slump flow and L-flow were slightly less than required criterion, they need to be improved. In terms of hydration temperature of HSC, it was found to satisfy the related criterion. Packing ability as well as placing ratio per hour of HSC, which was about $44m^3$, show outstanding results. If slump flow of developed ternary HSC is improved after the pumping it can be useful for the construction of high-rise buildings.

Behavior of Hybrid Stud under Compressive Load (복합스터드의 압축 좌굴 거동)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.609-619
    • /
    • 2004
  • An investigation was conducted on the activities around Europe in order to solve the problem of the thermal bridging of steel studs, which had caused a significant disadvantage. This study included the following: diminishing the contact area between the studs and the sheathing, lengthening the heat transfer route, replacing the steel web with a less conductive material, and placing foam insulation in locations where the thermal shorts are most critical. Although energy efficiency is usually the focus of such foreign cases because their stud application is mostly limited to low-rise residential buildings, both structural and thermal performance are taken into consideration in this study because these target middle-story buildings. A hybrid stud composed of steel and polymer was also developed. This hybrid stud, which is 150 SL in size, is made of a galvanized steel sheet (SGC58) and a glass fiber reinforced polymer (GFRP) withepoxy bonding. A total of 32 specimens were manufactured. Its parameters comprise two types of connection detail,s: the thickness of steel (1.0mm and 1.2mm) and of the GFRP (4mm-4ply and 6mm-6ply), and the ratio of the length to the depth (L/D = 3, 6, 9, 12). Steel stud specimens with the same conditions were compared to the hybrid stud. The test revealed that in the case of the steel specimen with a thickness of 1.0mm, the maximum load of hybrid studs increased an average of 1.62 times comparedto that of the steel stud. In the case of the steel specimen with a thickness of 1.2mm, on the other hand, the average increase was 1.46times. All specimens showed full composite action until the collapse.

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

GEOMETRIC NINLINEAR ANALYSIS OF UNERGROUND LAMINATED COMPISITE PIPES (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 1989
  • An analytical study was conducted using the Galerkin technique to determine behaviour of thin fibrereinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. It is assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. It is also assumed that radial shear stress is negligible because the ratio of thickness to the radius of pipe is very small. The above results are verified by the finite element analysis.

  • PDF