• Title/Summary/Keyword: composite element

Search Result 3,033, Processing Time 0.027 seconds

Finite Element Analysis on Buckling Pressure by the Lamination of Composite Pressure Bull (복합재 내압선체의 적층에 따른 좌굴하중 변화에 관한 유한요소 해석)

  • Son J. Y.;Cho J. R.;Bae W. B.;Kwon J. H.;Choi J. H.;Cho Y. S.;Kim T. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.458-462
    • /
    • 2005
  • This paper deal with the optimal lamination condition of cylindrical shell applied new composite URN300 for a study of composite empirical formula. Finite element analyses for isotropic materials considered element numbers and boundary conditions are compared with existing empirical formulas to apply FE analysis for composite. And composite tensile test is done to know the composite material applied FE analysis for composite. The results of FE analyses for isotropic materials have indicated that Optimal element number and boundary condition were 1600 and both simple support. These conditions were applied in composite FE analyses. Ply orientations and lamination patterns in FE analyses for composite were considered. Ply orientations are $0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;and\;90^{\circ}$. Lamination patterns are $[\pm\theta/0/90]_{14s]$ and $[\pm\theta_{14}/0_{14}/90_{14}]_s$ in FE analysis. Lamination pattern $[\pm\theta_{14}/0_{14}/90_{14}]_s$ is the equivalent model of $[\pm\theta/0/90]_{14s}$. At the result of this study, the FE analyses for composite have indicated that the optimized ply orientation $75^{\circ}$ is and real model must use in FE analysis for accurate results.

  • PDF

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

Postbuckling Behavior of Composite Laminated Cylinder under Lateral Pressure (횡방향 압력을 받는 복합적층 원통실린더의 좌굴후 거동해석)

  • 조종두;김헌주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.843-846
    • /
    • 1994
  • The bucking and postbuckling behavior of composite laminated long cylinders under lateral pressure are investigated by the nonlinear finite element method. A long cylinder of 3-D shell problem is modelled as 2-D plane strain problem for analysis. And for the finite element analysis, eight nodes quadratic element is utilized. Arc-length method is adopted for the iteration and load-increment along postbuckling equilibrium path. The composite laminated cylinders in study are composed of cross-plied uniaxially reinforced shells. As a prsult, buckling load and postbuckling behavior are discussed.

  • PDF

Experimental investigation and numerical analysis of optimally designed composite beams with corrugated steel webs

  • Erdal, Ferhat;Tunca, Osman;Ozcelik, Ramazan
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Composite beams with corrugated steel webs represent a new innovative system which has emerged in the past decade for medium span in the construction technology. The use of composite beams with corrugated steel webs results in a range of benefits, including flexible spaces and reduced foundation costs in the construction technology. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In the current research, an optimal designed I-girder beam with corrugated web has been proposed to improve the structural performance of continuous composite girder under bending moment. The experimental program has been conducted for six simply supported composite beams with different loading conditions. The tested specimens are designed by using one of the stochastic techniques called hunting search algorithm. In the optimization process, besides the thickness of concrete slab and studs, corrugated web properties are considered as design variables. The design constraints are respectively implemented from Eurocode 3, BS-8110 and DIN 18-800 Teil-1. The last part of the study focuses on performing a numerical study on composite beams by utilizing finite element analysis and the bending behavior of steel girders with corrugated webs experimentally and numerically verified the results. A nonlinear analysis was carried out using the finite element software ANSYS on the composite beams which were modelled using the elements ten-node high order quadrilateral type.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

Elastic stiffness of perfobond connections in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.221-241
    • /
    • 2022
  • Perfobond rib connectors are widely used in composite structures to achieve the composite action between the steel and the concrete, and empirical expressions for their strength and secant stiffness have been obtained by numerical simulations or push-out tests. Since perfobond connections are generally in an elastic state in the service process and the structural analysis are always based on the elastic properties of the members, the secant stiffness is not applicable for the normal structural analysis. However, the tangent stiffness of perfobond connections has not been introduced in previous studies. Moreover, the perfobond connections are bearing tension and shear force simultaneously when the composite beams subjected to torque or local loads, but the current studies fail to arrive at the elastic stiffness considering the combined effects. To resolve these discrepancies, this paper investigates the initial elastic stiffness of perfobond connections under combined forces. The calculation method for the elastic stiffness of perfobond connections is analyzed, and the contributions of the perfobond rib, the perforating rebar and the concrete dowel are investigated. A finite element method was verified with a high value of correlation for the test results. Afterwards, parametric studies are carried out using the reliable finite element analysis to explore the trends of several factors. Empirical equations for predicting the initial elastic stiffness of perfobond connections are proposed by the numerical regression of the data extracted by parametric studies. The equations agree well with finite element analysis and test results, which indicates that the proposed empirical equations reflect a high accuracy for predicting the initial elastic stiffness of perfobond connections.

An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells

  • Kim, K.D.;Park, T.H.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.387-410
    • /
    • 2002
  • Formulation of an 8 nodes assumed strain shell element is presented for the analysis of shells. The stiffness matrix based on the Mindlin-Reissner theory is analytically integrated through the thickness. The element is free of membrane and shear locking behavior by using the assumed strain method such that the element performs very well in modeling of thin shell structures. The material is assumed to be isotropic and laminated composite. The element has six degrees of freedom per node and can model the stiffened plates and shells. A great number of numerical testing carried out for the validation of present 8 node shell element are in good agreement with references.

ANALYSIS OF LOW-VELOCITY IMPACT ON COMPOSITE SANDWICH USING A SOLID ELEMENT (솔리드 요소를 이용한 복합재 샌드위치의 저속충격 해석)

  • Park, Jung;Park, Hoon-Cheol;Yoon, Kwang-Joon;Goo, Nam-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.170-173
    • /
    • 2001
  • Low-velocity impact on composite sandwich panel has been investigated. For the study, a finite element program is coded using 18-node assumed strain solid element and Newmark-beta method. Contact force is calculated from a proposed modified contact low. The finite element code is verified by solving typical example. The calculated impact behavior agreed well with experimental result.

  • PDF

Nonlinear Finite Element Analysis of Composite Shell Under Impact

  • Cho, Chong-Du;Zhao, Gui-Ping;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.666-674
    • /
    • 2000
  • Large deflection dynamic responses of laminated composite cylindrical shells under impact are analyzed by the geometrically nonlinear finite element method based on a generalized Sander's shell theory with the first order transverse shear deformation and the von-Karman large deflection assumption. A modified indentation law with inelastic indentation is employed for the contact force. The nonlinear finite element equations of motion of shell and an impactor along with the contact laws are solved numerically using Newmark's time marching integration scheme in conjunction with Akay type successive iteration in each step. The ply failure region of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical results, including the contact force histories, deflections and strains are presented and compared with the ones by linear analysis. The effect of the radius of curvature on the composite shell behaviors is investigated and discussed.

  • PDF

Rotordynamic Stability Analyses of a Composite Roller for Large LCD Panel Manufacturing (대형 LCD 패널 제조 공정용 복합재 롤러 봉의 진동 안정성 해석)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.641-648
    • /
    • 2007
  • Computational rotor dynamic analyses of designed composite roller for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects. General purpose commercial finite element code, with special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with different length are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.

  • PDF