• Title/Summary/Keyword: composite deck

Search Result 343, Processing Time 0.021 seconds

A Study on the Evaluation of Shear Resisting Capacity for the Various Perforated Shape Shear Connector (합성거동을 위한 유공판형 전단연결재의 강도평가에 관한 연구)

  • Kim, Young-Ho
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2008
  • In recent years, the reversed L-shaped perforated shear connector has been developed to mitigate the problem associated with headed stud and Perforbond shear connector and to simulate the simultaneous failure of concrete and shear connector. And FRP perforated shear connector has been applied to composite concrete and FRP module in the FRP-concrete composite bridge deck. The design criterion of the reversed L-shaped and FRP perforated shear connector has not been established yet since the lack of experimental and analytical study results. In this paper, the existing design equations for the Perforated were briefly discussed and the equation fur the prediction of shear resisting capacity of the reversed L-shaped and FRP perforated shear connector was suggested based on the experimental test, FEM analysis. and the existing equation for the Perfobond. The predict results obtained by the suggested equation arc compared with the experimental results, the applicability and effectiveness of suggested equation was verified.

Ambient vibration testing of Berta Highway Bridge with post-tension tendons

  • Kudu, Fatma Nur;Bayraktar, Alemdar;Bakir, Pelin Gundes;Turker, Temel;Altunisik, Ahmet Can
    • Steel and Composite Structures
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 2014
  • The aim of this study is to determine the dynamic characteristics of long reinforced concrete highway bridges with post-tension tendons using analytical and experimental methods. It is known that the deck length and height of bridges are affected the dynamic characteristics considerably. For this purpose, Berta Bridge constructed in deep valley, in Artvin, Turkey, is selected as an application. The Bridge has two piers with height of 109.245 m and 85.193 m, and the total length of deck is 340.0 m. Analytical and experimental studies are carried out on Berta Bridge which was built in accordance with the balanced cantilever method. Finite Element Method (FEM) and Operational Modal Analysis (OMA) which considers ambient vibration data were used in analytical and experimental studies, respectively. Finite element model of the bridge is created by using SAP2000 program to obtain analytical dynamic characteristics such as the natural frequencies and mode shapes. The ambient vibration tests are performed using Operational Modal Analysis under wind and human loads. Enhanced Frequency Domain Decomposition (EFDD) and Stochastic Subspace Identification (SSI) methods are used to obtain experimental dynamic characteristics like natural frequencies, mode shapes and damping ratios. At the end of the study, analytical and experimental dynamic characteristic are compared with each other and the finite element model of the bridge was updated considering the material properties and boundary conditions. It is emphasized that Operational Modal Analysis method based on the ambient vibrations can be used safely to determine the dynamic characteristics, to update the finite element models, and to monitor the structural health of long reinforced concrete highway bridges constructed with the balanced cantilever method.

Experimental Investigations on the Flexural Behavior of One-Way Concrete Slabs Reinforced with GFRP Re-Bar Bundle (유리섬유 보강 플래스틱 Re-Bar 다발로 보강된 1방향 콘크리트 슬래브의 휨거동에 관한 실험적 연구)

  • 윤순종;김병석;유성근;정재호;정상균
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • In recent years, the investigation on the development of fiber reinforced plastic(FRP) Re-Bar has been greatly increased due to the attractive physical and mechanical properties of FRP. The primary reason of such a tendency is in the fact that it does not ordinarily cause durability problems such as those associated with steel reinforcement corrosion. This study is an experimental investigation on the flexural behavior of one-way concrete slabs, which can be used to construct bridge deck, reinforced with GFRP Re-Bar bundle. The tensile tests of GFRP Re-Bar produced by domestic industry and third point bending tests of one-way slab specimens reinforced with GFRP Re-Bar bundle are peformed. For all slab specimens, load-deflection relations are predicted by using the ACI committee 440 and the results are compared with experimental ones. In order to establish the design criteria or guidelines of concrete flexural member reinforced with FRP Re-Bar, it is needed to evaluate the serviceability limit state as well as the strength limit state.

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.

Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges

  • Garcia-Guerrero, Juan M.;Jorquera-Lucerga, Juan J.
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.479-495
    • /
    • 2019
  • In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. Thus, this paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch bridges, with the intention of providing designers with useful tools at the early steps of design. Longitudinally and transversally stiffened hangers (and the effect of hinges at the hangers and their locations) are studied separately because the in-plane and the out-of-plane behavior of the bridge are uncoupled due to its symmetry. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, $Nielsen-L\ddot{o}hse$ or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient and, additionally, cheaper and easier to build can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.

Determination of Effective Flange Width in Single Plane Cable-Stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 유효플랜지폭 결정에 관한 연구)

  • Lee, Hwan-Woo;Kim, Kwang-Soo;Kang, Ho-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.343-351
    • /
    • 2010
  • Bending and axial compressive stresses are distributed across the whole upper flange of a box girder bridge which has the span-to-depth ratio (B/L) of below 0.5, according to Korea Bridge Design Specifications (Minister of Land, Transport and Maritime Affairs, 2005). Shear lag phenomenon, however, can take place in the construction phase of cable-stayed bridge, in which stresses combining bending moment due to dead weight and cable vertical compression are induced. This study aims to analyze the effective width of flange over which composite stresses are given, which should be calculated during the construction phase of stiffening girder of single plane cable-stayed box girder bridge. The study results indicate that the full width of stiffening girder can be regarded as the effective flange width when the span-to-depth ratio for the deck is below 0.38. In other words, the area, where shear lag is taken into consideration, is larger than the width of box girder in single plane cable-stayed box girder bridges. Therefore, the current practice of considering the full width as the effective flange width regardless of changes of the span-to-depth ratio during the construction stage can produce an unsafe bridge. If the effective flange width is determined according to the single span structural system in the early stage of construction when the span-to depth ratio for the deck is high and composite stresses of every part expect each end of the bridge are calculated, it can result in a safe structural design. Since the span-to-depth ratio gradually decreases, however, it is appropriate to determine the effective width of flange on the basis of the full width and the cantilever structural system.

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams

  • Fang, Zhuangcheng;Jiang, Haibo;Chen, Gongfa;Dong, Xiaotong;Shao, Tengfei
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.837-851
    • /
    • 2020
  • This study aims to examine the interface shear behavior between precast high-strength concrete slabs with pockets and steel beam to achieve accelerated bridge construction (ABC). Twenty-six push-out specimens, with different stud height, stud diameter, stud arrangement, deck thickness, the infilling concrete strength in shear pocket (different types of concrete), steel fiber volume of the infilling concrete in shear pocket concrete and casting method, were tested in this investigation. Based on the experimental results, this study suggests that the larger stud diameter and higher strength concrete promoted the shear capacity and stiffness but with the losing of ductility. The addition of steel fiber in pocket concrete would promote the ductility effectively, but without apparent improvement of bearing capacity or even declining the initial stiffness of specimens. It can also be confirmed that the precast steel-concrete composite structure can be adopted in practice engineering, with an acceptable ductility (6.74 mm) and minor decline of stiffness (4.93%) and shear capacity (0.98%). Due to the inapplicability of current design provision, a more accurate model was proposed, which can be used for predicting the interface shear capacity well for specimens with wide ranges of the stud diameters (from13 mm to 30 mm) and the concrete strength (from 26 MPa to 200 MPa).

Study of Structural Design of Polyethylene Pleasure Boat (폴리에틸렌 플레저 보트의 구조설계에 관한 연구)

  • Cho, Seok Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1551-1561
    • /
    • 2012
  • Boat or yacht hulls are mainly built using FRP composite materials. FRP boat hull manufacturing has been restricted since 2000 under international regulations on ocean environment safety. FRP composite materials cannot be recycled and require more than 100 years to biodegrade. Therefore, alternatives to FRP have been proposed by many boat builders. Steel, aluminum, and FRP are commonly used as boat hull materials. Their design specifications are proposed as Korean register of shipping. However, the design specifications for inexpensive materials for a small boat have not yet been studied. Small shipbuilders manufacture and sell HDPE canoes or HDPE kayaks. In this study, a hull form was designed based on actual boats. The thickness of an HDPE boat hull was determined based on ISO 12215-5 structural design specifications.

The Experimental Study of Full-scale Centrifugal Formed High Strength Concrete Prismatic Beam(CFPB) Composited with Deck Slab (상부 슬래브와 합성된 원심성형으로 제작된 초고강도 각형보의 실험연구 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2023
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the watertightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures such as silica fume. The ultra-high strength centrifugal shaped square beam installed on the wall is composited with the upper slab concrete and then subjected to a service load. Horizontal shear stress is generated by bending between the centrifugal molding beam and the floor plate, which causes the beam and floor plate to perform composite behavior through shear connections such as studs and rebars. In this study, a flexural load test was performed on a mock-up specimen that was synthesized by fabricating an RC slab on top of a 100 MPa-class centrifugal shaped beam produced at the factory. proven reliability.