• Title/Summary/Keyword: composite deck

Search Result 340, Processing Time 0.027 seconds

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

Effects of Composite Floor Slab on Seismic Performance of Welded Steel Moment Connections (철골모멘트 용접접합부의 내진성능에 미치는 합성슬래브의 영향)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.385-396
    • /
    • 2014
  • Traditionally, domestic steel design and construction practice has provided extra shear studs to moment frame beams even when they are designed as non-composite beams. In the 1994 Northridge earthquake, connection damage initiated from the beam bottom flange side was prevalent. The upward moving of the neutral axis due to the composite action between steel beam and floor deck was speculated to be one of the critical causes. In this study, full-scale seismic testing was conducted to investigate the side effects of the composite action in steel seismic moment frames. The specimen PN700-C, designed following the domestic connection and floor deck details, exhibited significant upward shift of the neutral axis under sagging (or positive) moment, thus producing high strain demand on the bottom flange, and showed a poor seismic performance because of brittle fracture of the beam bottom flange at 3% story drift. The specimen DB700-C, designed by using RBS connection and with the details of minimized floor composite action, exhibited superior seismic performance, without experiencing any fracture or concrete crushing, almost identical to the bare steel counterpart (specimen DB700-NC). The results of this study clearly indicate that the beams and connections in seismic steel moment frames should be constructed to minimize the composite action of a floor deck if possible.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

Behavior of Composite Steel Bridges According to the Concrete Slab Casting Sequences (바닥판 콘크리트 타설순서에 따른 합성형교량의 거동해석)

  • Kwak, Hyo Gyoung;Seo, Young Jae;Jung, Chan Mook;Park, Young Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.233-251
    • /
    • 1998
  • This paper deals with the prediction of behavior of composite girder bridges according to the placing sequences of concrete deck. Based on a degenerate kernel of compliance function in the form of Dirichlet series, the time-dependent behaviors of bridges are simulated, and the layer approach is adopted to determine the equilibrium condition in a section. The variation of bending moments along the bridge length caused by the slab casting sequence is reviewed and correlation studies between section types and placing sequences are conducted with the objective to establish the validity of the continuous placing of concrete deck on the closed steel box-girder which is broadly used in practice.

  • PDF

Push-out Performance Test of Composite Steel Truss Deck using Light Weight Concrete (경량콘크리트를 사용한 합성 철선트러스 데크의 푸쉬 아웃 성능 실험)

  • Choi, Byong Jeong;Moon, Hyo Jin;Han, Hong Soo;Han, Kweon Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2009
  • Push-out tests were performed to evaluate the shear capacity of a composite steel truss deck slab system, called an automatic prefabrication bar-mesh system, using lightweight concrete. The six specimens were classified into three groups: DP, NDP, and Solid, according to the variations between the bar mesh and the zinc plate automatic prefabrications. This paper focused on the failure behaviors, load-displacement characteristics, and a performance comparison based on design codes.

Finite Element Analysis for Bending Behavior of Composite Beam with Perfobond FRP Used as a Permanent Formwork (퍼포본드 FRP를 영구거푸집으로 활용한 합성보의 휨거동에 관한 유한요소해석 연구)

  • Kook, Moo-Sung;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3280-3286
    • /
    • 2011
  • In recent years, many efforts have steadily been allocated to develop a new deck system in terms of its materials and structures in order to make up for the shortcomings of reinforced concrete deck. This study implemented and analyzed the verification for concrete composite beam with perfobond FRP as a permanent formwork and the tensile reinforcement, using non-linear finite element analysis program. Approximately 8-15% difference of ultimate failure load between numerical and experimental results were found and showed a similar figure of strain distribution in failure state.

Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel (압출성형 ECC 패널을 이용하여 제작된 복합바닥슬래브의 휨 거동)

  • Cho, Chang-Geun;Han, Byung-Chan;Lee, Jong-Han;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.695-702
    • /
    • 2010
  • This paper presents a reinforced concrete composite deck slab system newly developed using a high ductile ECC extrusion panel. In the construction practice, the cracking of reinforced concrete slab often becomes a problem especially in parking garages, underground structures, and buildings. The ECC panel manufactured by extrusion process as a precast product has not only a high-quality in control of cracking but also a merit in applying the construction of concrete slab because the use of ECC panel can realize a formless or half-precast construction with cast-in-place concrete. In the newly developed deck slab system, the ECC extrusion panel is located in the bottom of slab with the thickness of 10 mm, reinforcements are assembled and located on the ECC panel, and finally the topping concrete is placed in the field. In order to evaluate the newly developed slab system, experimental works by four point bending test are conducted to compare with the conventional reinforced concrete slab system. From experiment, the developed deck slab system using a ECC panel gives many improved performances both in control of bending cracking and in load-carrying capacities of slabs.

Design of LB-DECK Based on Performance Evaluation (성능 평가에 근거한 LB-DECK의 설계)

  • Cho, Gyu Dae;Lho, Byeong Cheol;Cho, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.99-106
    • /
    • 2011
  • This study performed research for improvement on basic concept of PBD applying suitable design method before and after LB-DECK composition. According to study, in this case, before composition, it can reduce minuteness cracks by increasing bending tensile strength utilizing polymer concrete, can expect sensuous effect, improve durability as to low permeability, and was evaluated that can reduce covering depth according as it. Also, because LB-DECK baseplate that apply the empirical design method composite is superior load resistance ability than general baseplate, safety is increased, it is expected to secure constructibility and economic performance at the same time because reinforcement arrangement method and reinforcement amount are fixed even if span effective span is increased at ultimate strength design method application.

Research on the Application of Precast Deck to Continuous Bridges (프리캐스트 바닥판의 연속교 적용에 관한 연구)

  • 정철헌;심창수;윤석구;정운용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.573-578
    • /
    • 2001
  • In order to apply a precast deck to continuous composite bridges, several experiments and analytical studies were performed. Design criterion for crack prevention should be such that it does not permit tension at the joint to occur when the service loads are applied. Details of the shear pocket for studs and material properties of filler in the pocket and the joint are very important considerations in design and construction. Combination of longitudinal prestressing methods, internal tendon and prestressing after shear connection, should be used for prevention of cracking in continuous precast deck bridges. Design guides for the determination of prestressing force are suggested.

  • PDF