• Title/Summary/Keyword: composite control

Search Result 1,557, Processing Time 0.033 seconds

Multi-modal Vibration Control of Intelligent Laminated Composite Plates Using System Identification and Optimal Control (시스템식별과 최적제어를 이용한 지능형 복합적층판의 다중보드 진동제어)

  • 김정수;강영규;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • Active vibration control of intelligent laminated composite plates is performed experimental1y Laminated composite place is modeled by the system identification method. For the system identification process, the laminated composite place is excited by two piezoelectric actuators with PRBS signals. At the same time, the displacement of the laminated composite plate is measured by a gap sensor. From these excited PRBS signals and the measured displacement sequence, system parameters of the laminated composite plate are estimated using a recursive prediction error method. Model of the laminated composite plate with two piezoeletric actuators is assumed to be the form of ARMAX. From the estimated ARHMAX model, a state space equation of the observable canonical form is obtained. With this state space equation, a controller and an observer for active vibration control is designed using the optimal control method. Controller and observer are implemented on a digital system. Experiments on the vibration control are Performed with changing the outer layer fiber orientation of intelligent composite plates.

Dynamic Characteristics Modification of Damaged Composite Structure Using MFC and Active Control Algorithm (MFC와 능동 제어를 이용한 손상된 복합재의 동적 특성 복원)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1066-1072
    • /
    • 2013
  • In this work, active control algorithm is adopted to reduce delamination effects of the damaged composite structure and control performance with MFC actuator is numerically evaluated. Finite element model for the damaged composite structure with piezoelectric actuator is established based on improved layerwise theory. In order to achieve high control performance, MFC actuator, which has increased actuating force, is considered as a piezoelectric actuator. Mode shapes and corresponding natural frequencies for the damaged smart composite structure are studied. After design and implementation of active controller, dynamic characteristics of the damaged smart composite structure are investigated.

Active Control of Damaged Composite Structure Using MFC Actuator (MFC를 이용한 손상된 복합재의 능동제어)

  • Sohn, Jung Woo;Kim, Heung Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.535-540
    • /
    • 2013
  • In this work, active control algorithm is adopted to reduce delamination effects of the damaged composite structure and control performance with MFC actuator is numerically evaluated. Finite element model for the damaged composite structure with piezoelectric actuator is established based on improved layerwise theory. In order to achieve high control performance, MFC actuator, which has increased actuating force, is considered as a piezoelectric actuator. Mode shapes and corresponding natural frequencies for the damaged smart composite structure are studied. After design and implementation of active controller, dynamic characteristics of the damaged smart composite structure are investigated.

  • PDF

Microwave Absorbing Characteristic Improvement by Permittivity Control of Ferrite Composite Microwave Absorber (유전율제어에 의한 복합 Ferrite 전파흡수체의 성능향상)

  • 신재영;권형주;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.415-419
    • /
    • 1994
  • The material constants(the complex permeability and permittivity) of ferrite composite determine its microwave absorbing characteristics. Therefore, in order to improve the microwave absorbing characteristics, it is necessary to control the material constants of the ferrite composite. In this study, the method of improving microwave absorbing characteristics by control of permittivity of ferrite composite which has not satisfying matching condition in C-X band (4 GHz~12.4 GHz) was investigated. It was possible to control the permittivity by adjusting graphite loading ratio in the ferrite composite microwave absorber. It was also concluded that the control of permittivity of ferrite composite is effective method to improve the microwave absorbing characteristics.

  • PDF

Shape Optimization in Laminated Composite Plates by Volume Control (최적 제어를 통한 복합적층판의 형상최적화)

  • 한석영;백춘호;박재용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.277-282
    • /
    • 2003
  • The growth-strain method was applied to cutout optimization in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value. In this study, of particular interest is to see whether the growth-strain method developed for shape optimization in isotropic media would work for laminated composite Plates. In volume control of the growth-strain method, it makes Tsai-Hill value at each element uniform in laminated composite plates under the predetermined volume. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions and predetermined volumes of laminated composite plates. As a result, it was verified that volume control of the growth-strain method worked very well for cutout optimization in laminated composite plates.

  • PDF

Experimental Study on Shape Control of Smart Composite Structure with SMA actuators (SMA 작동기를 이용한 스마트 복합재 구조의 형상 제어에 관한 실험적 연구)

  • Yang Seung-Man;Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • In this paper, active shape control of composite structure actuated by shape memory alloy (SMA) wires is presented. Hybrid composite structure was established by attaching SMA actuators on the surfaces of graphite/epoxy composite beam using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperatures. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For faster and more accurate shape or deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

  • PDF

Optimal Vibration Control Experiments of Composite Plates Using Piezoelectric Sensor/Actuator (압전 감지기/작동기를 이용한 복합재 평판의 최적 진동제어 실험)

  • Rew, Keun-Ho;Han, Jae-Hung;Lee, In
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.161-168
    • /
    • 1997
  • The present paper describes the vibration control experiment of composite plates with bonded piezoelectric sensor and actuator. The system is modeled as two degree-of-freedom system using modal coordinates and the system parameters are obtained from vibration tests. Kalman filter is adopted for extracting modal coordinates from sensor signal, and control algorithms applied to the system are Linear Quadratic Gaussian(LQG) control, Bang-Bang Control (BBC), Negative Velocity Feedback(NVF), Proportional Derivative Control(PDC). From observation of the spillover and control perfomance, it is concluded that a higher order control algorithm such as LQG rather than BBG, NVF, PDC is suitable for efficient simultaneous control of both bending and twisting modes of composite plates.

  • PDF

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

A Study on the Demand Forecasting Control using A Composite Fuzzy Model (복합 퍼지모델을 이용한 디맨드 예측 제어에 관한 연구)

  • Kim, Chang-Il;Seong, Gi-Cheol;Yu, In-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.417-424
    • /
    • 2002
  • This paper presents an industrial peak load management system for the peak demand control. Kohonen neural network and wavelet transform based techniques are adopted for industrial peak load forecasting that will be used as input data of the peak demand control. Firstly, one year of historical load data of a steel company were sorted and clustered into several groups using Kohonen neural network and then wavelet transforms are applied with Biorthogonal 1.3 mother wavelet in order to forecast the peak load of one minute ahead. In addition, for the peak demand control, composite fuzzy model is proposed and implemented in this work. The results are compared with those of conventional model, fuzzy model and composite model, respectively. The outcome of the study clearly indicates that the composite fuzzy model approach can be used as an attractive and effective means of the peak demand control.