• Title/Summary/Keyword: composite connection

Search Result 667, Processing Time 0.042 seconds

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • Kim, Jin-Un;Kim, Gyeong-Min;Kim, Yong-Ho;Kim, Su-Yong;Jo, Su-Ji;Lee, Eung-Sang;Seok, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Mechanical Properties of High Stiffness Shear Connector (고강성 스터드볼트의 역학적 특성에 관한 연구)

  • Eom, Chul-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.491-496
    • /
    • 2015
  • The headed studs used extensively for steel-composite construction are specified as SS400 in the current Korean Standard specification considering the welding condition. And the corresponding equation for the shear force calculation is limited for the use of compression strength of concrete below $300kgf/cm^2$. However, it is expected that the high strengthening and precasting of both steel and concrete due to the necessity of shear connector or other connecting material for the combination of steel and concrete. Therefore, the experimental results obtained during the development process of high strength stud for the connection of high strength concrete and the steel member are reported in this paper. Also the effectiveness of newly developed shear connector using pipe(pipe stud) to increase the stiffness of a stud is verified by comparing both the stiffness and the strength with common stud bolt through the welding ability, mechanical characteristics and experimental investigation.

Dual-Band Unequal Power Divider based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 이중대역 비대칭 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In this paper, the unequal power divider based on CRLH (Composite Right/Left-Handed) transmission line with dual-band characteristic is proposed. They consist of dual-band branch line hybrid coupler, the connection between input and isolation port of hybrid coupler and ${\lambda}/4$ impedance transformer. When the transmission line between input and isolation port of hybrid coupler is asymmetrical connected, the divider is obtained the output results of the equal phase and unequal power dividing ratio. The simulation results of the divider represent the power ratio of 0 dB ~ 20 dB. To validate a function of divider, the hybrid coupler and transformer with 880 MHz and 1850 MHz is implemented. As a result, the proposed unequal divider obtains the power ratio of 3.2 dB ~ 8.8 dB at 880 MHz and 2.5 dB ~ 14.0 dB at 1850 MHz.

Process optimization for biodiesel production from indigenous non-edible Prunus armeniaca oil

  • Singh, Deepak;Kumar, Veerendra;Sandhu, S.S.;Sarma, A.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.189-202
    • /
    • 2016
  • This work emphasized optimum production of biodiesel using non-edible Prunus armeniaca (Bitter Apricot) oil via transesterification collected from the high altitude areas of Himachal Pradesh, India. In this study the author produced biodiesel through the process of transesterification by using an alkali catalyst with alcohol (methanol and ethanol), under the varying molar ratio (1:6, 1:9, 1:12), variable catalyst percentage (1% and 2%) and temperature ($70^{\circ}C$, $75^{\circ}C$, $80^{\circ}C$, $85^{\circ}C$). Furthermore, a few strong base catalysts were used that includes sodium hydroxide, potassium hydroxide, sodium metal and freshly prepared sodium methoxide. After screening the catalyst, response surface methodology (RSM) in connection with the central composite design (CCD) was used to statistically evaluate and optimize the biodiesel production operation using NaOH as catalyst. It was found that the production of biodiesel achieved an optimum level biodiesel yield with 97.30% FAME conversion under the following reaction conditions: 1) Methanol/oil molar ratio: 1:6, 2) Reaction time: 3h, 3) Catalyst amount: NaOH 2 wt. %, and 4) Reaction temperature: $85^{\circ}C$. The experimental results showed that the optimum production and conversion of biodiesel through the process of transesterification could be achieved under an optimal set of reaction conditions. The biodiesel obtained showed appropriate fuel properties as specified in ASTM, BIS and En- standards.

Shear resistance characteristic and ductility of Y-type perfobond rib shear connector

  • Kim, Sang-Hyo;Park, Se-Jun;Heo, Won-Ho;Jung, Chi-Young
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.497-517
    • /
    • 2015
  • This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.