• 제목/요약/키워드: composite connection

검색결과 662건 처리시간 0.025초

분포하중을 받는 목재 적층복합재 빔의 볼트 체결 최적화 설계 (Design Optimization of Bolted Connection with Wood Laminated Composite Beams Subjected to Distributed Loads)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제26권3호
    • /
    • pp.292-298
    • /
    • 2017
  • Numerical analysis for various design parameters should be preceded by optimal design of composite materials. Numerous studies have been conducted on the bolting of interconnecting beams. In this study, the response surface method was applied to optimize the design of bolted joints connected by laminated wood composite beams. The response surface was created by combining the FEA code for composite analysis and the algorithm for forming the response surface. Optimization on this response surface was performed with a genetic algorithm to derive the results. The determination of the optimum bolt-hole position for the connection of composite beams is an optimization problem. Tsai-Wu composite failure index, maximum deflection, and simple von Mises stress are set as the objective functions. It has been proved that the design results of the optimized bolt-hole are superior to the design performance of the existing conventional bolt-hole position.

Finite element response sensitivity analysis of continuous steel-concrete composite girders

  • Zona, Alessandro;Barbato, Michele;Conte, Joel P.
    • Steel and Composite Structures
    • /
    • 제6권3호
    • /
    • pp.183-202
    • /
    • 2006
  • The behavior of steel-concrete composite beams is strongly influenced by the type of shear connection between the steel beam and the concrete slab. For accurate analytical predictions, the structural model must account for the interlayer slip between these two components. This paper focuses on a procedure for response sensitivity analysis using state-of-the-art finite elements for composite beams with deformable shear connection. Monotonic and cyclic loading cases are considered. Realistic cyclic uniaxial constitutive laws are adopted for the steel and concrete materials as well as for the shear connection. The finite element response sensitivity analysis is performed according to the Direct Differentiation Method (DDM); its analytical derivation and computer implementation are validated through Forward Finite Difference (FFD) analysis. Sensitivity analysis results are used to gain insight into the effect and relative importance of the various material parameters in regards to the nonlinear monotonic and cyclic response of continuous composite beams, which are commonly used in bridge construction.

Experimental analysis on steel and lightweight concrete composite beams

  • Valente, Isabel B.;Cruz, Paulo J.S.
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.169-185
    • /
    • 2010
  • The present work describes the experimental tests on steel and lightweight concrete composite beams performed at University of Minho, Portugal. The study involves tests on simply supported composite beams of 4.5 m span, with the same geometrical disposition, supports and materials. The geometrical configuration for the cross section and supports is identical for every beam, varying the shear connectors' distribution and the loading conditions. Headed studs are used to provide the connection between the steel profile and the concrete slab. The parameters in study are the stud disposition and the load distribution. The main objective is to describe the composite beams behaviour, focused on its connection, and to analyse the contribution of the different components to the beams load and deformation capacity. All the tests explored the beams maximum load and deformation capacity and different types of failure were observed.

Use of UHPC slab for continuous composite steel-concrete girders

  • Sharif, Alfarabi M.;Assi, Nizar A.;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.321-332
    • /
    • 2020
  • The loss of composite action at the hogging moment zone for a continuous composite girder reduces the girder stiffness and strength. This paper presents an experimental investigation of the use of an ultra-high performance concrete (UHPC) slab at the hogging moment zone and a normal concrete (NC) slab at the sagging moment zone. The testing was conducted to verify the level of loading at which composite action is maintained at the hogging moment zone. Four two-span continuous composite girders were tested. The thickness of the UHPC varied between a half and a full depth of slab. The degree of shear connection at the hogging moment zone varied between full and partial. The experimental results confirmed the effectiveness of the UHPC slab to enhance the girder stiffness and maintain the composite action at the hogging moment zone at a load level much higher than the upper service load limit. To a lesser degree enhanced performance was also noted for the smaller thickness of the UHPC slab and partial shear connection at the hogging moment zone. Plastic analysis was conducted to evaluate the ultimate capacity of the girder which yielded a conservative estimation. Finite element (FE) modeling evaluated the girder performance numerically and yielded satisfactory results. The results indicated that composite action at the hogging moment zone is maintained for the degree of shear connection taken as 50% of the full composite action and use of UHPC as half depth of slab thickness.

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

Load-slip curves of shear connection in composite structures: prediction based on ANNs

  • Guo, Kai;Yang, Guotao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.493-506
    • /
    • 2020
  • The load-slip relationship of the shear connection is an important parameter in design and analysis of composite structures. In this paper, a load-slip curve prediction method of the shear connection based on the artificial neural networks (ANNs) is proposed. The factors which are significantly related to the structural and deformation performance of the connection are selected, and the shear stiffness of shear connections and the transverse coordinate slip value of the load-slip curve are taken as the input parameters of the network. Load values corresponding to the slip values are used as the output parameter. A twolayer hidden layer network with 15 nodes and 10 nodes is designed. The test data of two different forms of shear connections, the stud shear connection and the perforated shear connection with flange heads, are collected from the previous literatures, and the data of six specimens are selected as the two prediction data sets, while the data of other specimens are used to train the neural networks. Two trained networks are used to predict the load-slip curves of their corresponding prediction data sets, and the ratio method is used to study the proximity between the prediction loads and the test loads. Results show that the load-slip curves predicted by the networks agree well with the test curves.

합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동 (Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection)

  • 강석봉;이경택
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.503-513
    • /
    • 2007
  • 구조물의 지진응답은 구조물의 강성도에 영향을 미치는 접합부의 특성에 영향을 받는다. 본 연구에서는 합성반강접 접합부를 갖는 2차원 8층 비가새 철골구조물에 대하여 동적 비선형 해석 프로그램을 이용한 푸쉬오버 해석과 시간이력해석을 실시하여 구조물의 거동을 예측하였다. 접합부 비선형 모멘트-회전 특성, 합성보 및 철골기둥의 재료 비선형 특성을 고려하여 구조해석을 실시하였다. 합성반강접 접합부를 완전 강접합부로 이상화하면 푸쉬오버 해석에서 구조물의 초기강성도와 종국강도가 증가되었고 시간이력해석에서는 밑면전단력, 최대층간변위, 보 및 기둥에 발생되는 최대 휨모멘트가 접합부 강성 및 이력거동의 영향을 받았다. 최대지반가속도가 0.4g인 지진파에 대하여 합성반강접 구조물에서는 FEMA 273의 최대 층간변위에 대한 인명손상방지 기준을 만족하였으며 보와 기둥이 비탄성 거동을 경험하지 않은 반면 완전 강접합부로 이상화한 구조물에서는 보 및 기둥이 비탄성 거동을 경험하였다.

고력볼트 인장접을 갖는 합성상판의 이음구조에 관한 연구 (The Study of joint structure of composite slabs with the tensile grip connection)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제9권3호
    • /
    • pp.215-220
    • /
    • 2006
  • Recently, steel-concrete composite slab decks have been widely used as highway bridge decks. In the construction of the composite slab decks, it is necessary to join two adjacent blocked bottom plates to form one unite in the longitudinal direction. In this paper, several types of longitudinal direction joints for Robinson type composite slab decks ared proposed herein and static bending test are carried out by using slab specimens. And the stress and deformation of the tensile grip connection with high strength bolts are discussed by using three-dimensional elastic-plastic FEM.

  • PDF

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

프리캐스트 바닥판 PSC 합성거더 교량의 거동 (Behavior of PSC Composite Bridge with Precast Decks)

  • 정철헌;현병학
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.873-880
    • /
    • 2006
  • 본 논문에서는 기존의 수평전단 설계식을 적용하여 프리캐스트 바닥판 PSC 합성거더 교량을 설계, 제작하였다. 피로하중에 대한 바닥판과 거더 그리고 전단연결부의 내구성과 거동특성을 평가하기 위하여 피로실험을 수행하였다. 실험결과 200만회 반복하중을 재하한 후 바닥판과 거더의 균열 및 잔류처짐은 발생하지 않았으며, 휨강성의 감소없이 선형거동을 나타냈다. 그리고 전단연결부의 손상은 나타나지 않았다. 또한 정적실험을 수행하여 연결부의 거동과 설계식의 적용성을 평가하고, 극한하중 상태에서의 구조적 성능과 정적강도 등을 평가하였다. 프리캐스트 바닥판 PSC 합성거더 교량은 사용하중상태에서 균열에 대해 2.08의 안전율을 나타냈으며, 파괴 시 충분한 극한내력과 연성거동을 나타냈다. 수평전단 설계식을 프리캐스트 바닥판 PSC 합성거더 교량의 수평전단 설계에 적용할 경우 사용성 및 구조적 안전성에 문제가 없는 경제적이고 신속한 형태의 교량을 시공할 수 있을 것으로 판단된다.