• Title/Summary/Keyword: composite bonded patch

Search Result 50, Processing Time 0.018 seconds

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch

  • Mechab, Belaid;Chama, Mourad;Kaddouri, Khacem;Slimani, Djelloul
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1173-1182
    • /
    • 2016
  • The objective of this work was to evaluate the ductile cracked structures with bonded composite patch used in probabilistic elastic plastic fracture mechanics subjected to tensile load. The finite element method is used to analyze the stress intensity factors for elastic case, the effect of cracks and the thickness of the patch ($e_r$) are presented for calculating the stress intensity factors. For elastic-plastic the Monte Carlo method is used to predict the distribution function of the mechanical response. According to the obtained results, we note that the stress variations are important factors influencing on the distribution function of (J/Je).

Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch

  • Benchiha, Aicha;Madani, Kouider;Touzain, Sebastien;Feaugas, Xavier;Ratwani, Mohan
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.951-962
    • /
    • 2016
  • The determination of the stress intensity factor at the crack tip is one of the most widely used methods to predict the fatigue life of aircraft structures. This prediction is more complicated for repaired cracks with bonded composite patch. This study is used to compute the stress intensity factor (SIF) and crack opening displacement (COD) for cracks repaired with single and double-sided composite patches. The effect of the presence of disbond region in adhesive at the crack was taken into consideration. The results show that there is a considerable reduction in the asymptotic value of the stress-intensity factors and the crack opening displacement at the crack tip. The use of a double-sided patch suppresses the bending effect due to the eccentricity of the patch on one side only.

A Study on Fatigue Crack Growth Analysis of Inclined Cracked Plate with Composite Patched Repair (경사균열을 갖는 복합재료 보강판의 피로균열 성장에 관한 연구)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2091-2099
    • /
    • 2001
  • Fatigue crack growth behavior of inclined cracked Al 6061-T6 thick aluminum plate(6mm) repaired with the bonded composite patch was studied. A 0°inclined crack bonded reinforced composite patch and 15°, 30°, 45°, 60°inclined crack plates were tested. The effect of patch and inclined angle were studied and compared to each other. Also we investigated to the crack propagation direction and debonding behavior during the fatigue crack growth test. In this paper. a study was con(ducted to get an fatigue life, fatigue crack growth ratio and crack growth direction. Finally, the effectiveness of composite patch on inclined cracked plate was investigated. The results demonstrated thats there was a definite variation in fatigue life and fatigue crack growth behavior depending on the inclined crack angle.

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.

Numerical study of bonded composite patch repair in damaged laminate composites

  • Azzeddine, Nacira;Benkheira, Ameur;Fekih, Sidi Mohamed;Belhouari, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.2
    • /
    • pp.151-168
    • /
    • 2020
  • The present study deals with the repair of composite structures by bonding composite patches. The composite structure is a carbon/epoxy laminate with stacking sequence [45/-45/0/90]S. The damaged zone is simulated by a central crack and repaired by bonding symmetrical composite patches. The repair is carried out using composite patches laminated from the same elemental folds as those of the cracked specimen. Three-dimensional finite element method is used to determine the energy release rate along the front of repaired crack. The effects of the repair technique used single or double patch, the stacking sequence of the cracked composite patch and the adhesive properties were highlighted on the variations of the fracture energy in mode I and mixed mode I + II loading.

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

Repair methods for aging aircraft and application of composite patch repair (노후항공기의 보수 방법 및 복합재 패치보수의 응용)

  • 김위대;김종진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

A Study on the Fatigue Characteristics of Aluminum Repaired by Unidirectional Graphite/Epoxy Composites (일방향 탄소섬유/에폭시 복합재 패치로 보수된 알루미늄의 피로특성에 대한 연구)

  • 김만태;신명근;한운용;이지훈;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1386-1388
    • /
    • 2003
  • In this study. the fatigue behavior of cracked aluminum repaired by unidirectional graphite/epoxy composites was experimentally investigated. The aluminum used was 7075-T6 and the patch used was four plied unidirectional ([0]$_4$) composites. The composite patch was adhesively bonded to the cracked aluminum using secondary bonding procedure. Two different specimens of cracked aluminum and cracked aluminum repaired with patch were used in the fatigue tests. Load ratio and the frequency applied in the fatigue tests were 0 and 10 Hz, respectively. The results showed that the fatigue behavior of cracked aluminum was improved by repairing the cracked area with composite patch. Specifically, the specimen repaired by composite patch showed 30% more improved fatigue behavior than regular specimen.

  • PDF

Elastic-plastic analysis of the J integral for repaired cracks in plates

  • Salem, Mokadem;Bouiadjra, Belabbes Bachir;Mechab, Belaid;Kaddouri, Khacem
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.87-96
    • /
    • 2015
  • In this paper, three-dimensional finite element method is used to analyze the J integral for repaired cracks in plates with bonded composite patch and stiffeners. For elastic the effect of cracks, the thickness of the patch ($e_r$) and properties of the patch are presented for calculating the J integral. For elastic-plastic a several calculations have been realized to extract the plasticized elements around the crack tip of repaired and un-repaired crack. The obtained results show that the presence of the composite patch and stiffener reduces considerably the size of the plastic zone ahead of the crack. The effects of crack size and the inter-distance of repaired cracks were analysed.