• 제목/요약/키워드: composite beam-column joint

검색결과 145건 처리시간 0.017초

Bolted T-stubs: A refined model for flange and bolt fracture modes

  • Francavilla, Antonella B.;Latour, Massimo;Piluso, Vincenzo;Rizzano, Gianvittorio
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.267-293
    • /
    • 2016
  • It is well known that, in order to accurately predict the behaviour of steel structures a requirement the definition of the mechanical behaviour of beam-to column joints is of primary importance. This goal can be achieved by means of the so-called component method, which, in order to obtain the whole behaviour of connections, provides to break up joints in basic components of deformability and resistance. One of the main joint components used to model bolted connections is the so-called equivalent T-stub in tension, which is normally used to predict the behaviour of bolted plates in bending starting from the behaviour of the single bolt rows. In past decades, significant research efforts have been devoted to the prediction of the behaviour of bolted T-stubs but, to date, no particular attention has been devoted to the characterization of their plastic deformation capacity. To this scope, the work presented in this paper, taking into account the existing technical literature, proposes a new theoretical model for predicting the whole behaviour up to failure of bolted T-stubs under monotonic loading conditions, including some complexities, such as the bolt/plate compatibility requirement and the bolt fracture, which are necessary to accurately evaluate the ultimate displacement. After presenting the advances of the proposed approach, a comparison between theoretical and experimental results is provided in order to verify its accuracy.

A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures

  • Sadeghian, Vahid;Vecchio, Frank
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.287-309
    • /
    • 2015
  • FormWorks-Plus is a generalized public domain user-friendly preprocessor developed to facilitate the process of creating finite element models for structural analysis programs. The lack of a graphical user interface in most academic analysis programs forces users to input the structural model information into the standard text files, which is a time-consuming and error-prone process. FormWorks-Plus enables engineers to conveniently set up the finite element model in a graphical environment, eliminating the problems associated with conventional input text files and improving the user's perception of the application. In this paper, a brief overview of the FormWorks-Plus structure is presented, followed by a detailed explanation of the main features of the program. In addition, demonstration is made of the application of FormWorks-Plus in combination with VecTor programs, advanced nonlinear analysis tools for reinforced concrete structures. Finally, aspects relating to the modelling and analysis of three case studies are discussed: a reinforced concrete beam-column joint, a steel-concrete composite shear wall, and a SFRC shear panel. The unique mixed-type frame-membrane modelling procedure implemented in FormWorks-Plus can address the limitations associated with most frame type analyses.

스마트 모니터링용 광섬유센서 (Fiber Optic Sensors for Smart Monitoring)

  • 김기수
    • 한국지진공학회논문집
    • /
    • 제10권6호
    • /
    • pp.137-145
    • /
    • 2006
  • 최근 건설기술이 발달함에 따라 점차적으로 더욱 높은 정확성과 신뢰성을 바탕으로 구조물의 상태를 파악 또는 예측 할 수 있는 기술적인 체제가 요구되고 있는 시점에서, 광섬유센서는 내구성과 높은 분해능, 전자기파 노이즈 저항성, 절대값의 측정, 다중화 등의 가지고 있는 여러 장점 때문에 미국 등 선진국의 경우 교량, 터널 그리고 건물 등에 변위와 변형률 측정에 많은 설치가 진행되어 왔고, 광섬유 센서를 이용한 시스템이 구조물의 안정성과 잔존수명을 판단하는 기준으로 중요한 역할을 할 것으로 기대되고 있다. 본 논문에서는 이러한 광섬유센서 중에서 일반적으로 가장 많이 사용하고 있는 광섬유격자 센서의 응용의 폭을 확대하기 위하여 여러 가지 응용분야에 적용하고자 하였으며, 특히 전단응력이 많이 걸려 foil형 스트레인 게이지를 사용하기 어려운 보 기둥 접합부에 적용하여 광섬유격자 센서가 일반적으로 사용되는 전자식 변위 센서들과 정밀도가 대단히 차이가 나고 있음을 보여주고 있고, 복합재료와 콘크리트 접합 구조물에 적용하여 흔히 발생하는 결함인 delamination을 측정하는데 광섬유격자 센서가 유효적절함을 보여주고 있으며, 원자력발전소 격납구조물과 같은 대형구조물에 적용하여 변위를 측정함에 있어서 광섬유격자 센서가 시공도 용이하고 데이터도 양호함을 보여 주고 있어, 기존의 어떤 구조물도 광섬유센서를 적용하여 쉽게 광섬유 스마트구조물화 할 수 있음을 보여준다.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

A simple panel zone model for linear analysis of steel moment frames

  • Saffari, Hamed;Morshedi, Esmaeil
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.579-598
    • /
    • 2020
  • Consideration of the panel zone (PZ) deformations in the analysis of steel moment frames (SMFs) has a substantial effect on structural response. One way to include the PZ effect on the structural response is Krawinkler's PZ model, which is one of the best and conventional models. However, modeling of Krawinkler's PZ model has its complexity, and finding an alternative procedure for PZ modeling is of interest. In this study, an efficient model is proposed to simplify Krawinkler's PZ model into an Adjusted Rigid-End Zone (AREZ). In this way, the rigid-end-zone dimensions of the beam and column elements are defined through an appropriate rigid-end-zone factor. The dimensions of this region depend on the PZ stiffness, beam(s) and columns' specifications, and connection joint configuration. Thus, to obtain a relationship for the AREZ model, which yields the dimensions of the rigid-end zone, the story drift of an SMF with Krawinkler's PZ model is equalized with the story drift of the same structure with the AREZ model. Then, the degree of accuracy of the resulting relationship is examined in several connections of generic SMFs. Also, in order to demonstrate the applicability of the proposed model in SMFs, several SMFs ranging from 3- to 30-story representing low- to high-rise buildings are examined through linear static and dynamic time history analysis. Furthermore, non-linear dynamic analyses of three SMFs conducted to validate the degree of accuracy of the proposed model in the non-linear analysis of SMFs. Analytical results show that there is considerable conformity between inter-story drift ratio (IDR) results of the SMFs with Krawinkler's PZ model and those of the centerline SMFs with AREZ.