• Title/Summary/Keyword: composite Rayleigh fading-lognormal shadowing

Search Result 2, Processing Time 0.015 seconds

Analysis of Improved Cyclostationary Spectrum Sensing with SLC Diversity over Composite Multipath Fading-Lognormal Shadowing Channels

  • Zhu, Ying;Liu, Jia;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.799-818
    • /
    • 2014
  • Spectrum sensing is a key technical challenge for cognitive radio (CR). It is well known that multi-cycle cyclostationarity (MC) detector is a powerful method for spectrum sensing. However, conventional MC detector is difficult to implement due to its high computational complexity. This paper pays attention to the fact that the computation complexity can be reduced by simplifying the test statistic of conventional MC detector. Based on this simplification process, an improved MC detector is proposed. Compared with the conventional one, the proposed detector has the low-computational complexity and sufficient-accuracy on sensing performance. Subsequently, the sensing performances are further investigated for the cases of Rayleigh, Nakagami-m, Rician, composite Rayleigh fading-lognormal shadowing and composite Nakagami fading-lognormal shadowing channels, respectively. Furthermore, the square-law combining (SLC) is introduced to improve the detection capability over fading-shadowing channels. The corresponding closed-form expressions of average detection probability are derived for each case by the moment generation function (MGF) approach. Finally, illustrative and analytical results show that the efficiency and reliability of proposed detector and the improvement on sensing performance by SLC over composite fading-shadowing channels.

Downlink Performance of Distributed Antenna Systems in MIMO Composite Fading Channel

  • Xu, Weiye;Wang, Qingyun;Wang, Ying;Wu, Binbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3342-3360
    • /
    • 2014
  • In this paper, the capacity and BER performance of downlink distributed antenna systems (DAS) with transmit antenna selection and multiple receive antennas are investigated in MIMO composite channel, where path loss, Rayleigh fading and lognormal shadowing are all considered. Based on the performance analysis, using the probability density function (PDF) of the effective SNR and numerical integrations, tightly-approximate closed-form expressions of ergodic capacity and average BER of DAS are derived, respectively. These expressions have more accuracy than the existing expressions, and can match the simulation well. Besides, the outage capacity of DAS is also analyzed, and a tightly-approximate closed-form expression of outage capacity probability is derived. Moreover, a practical iterative algorithm based on Newton's method for finding the outage capacity is proposed. To avoid iterative calculation, another approximate closed-form outage capacity is also derived by utilizing the Gaussian distribution approximation. With these theoretical expressions, the downlink capacity and BER performance of DAS can be effectively evaluated. Simulation results show that the theoretical analysis is valid, and consistent with the corresponding simulation.