• Title/Summary/Keyword: component tolerance

Search Result 156, Processing Time 0.031 seconds

SIMULTANEOUS OPTIMIZATION OF TOLERANCE SYNTHESIS IN ASSEMBLY AND COMPONENT DIMENSIONS

  • Kim Young Jin;Cho Byung Rae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.529-536
    • /
    • 2003
  • The majority of previous studios on tolerance synthesis have viewed the issue as a design methodology to determine optimal component tolerances on behalf of a manufacturer. while meeting given assembly tolerance requirements Although a considerable amount of research has been done on this issue. a couple of important questions still remain unanswered First. how ran a design engineer quantitatively incorporate a customer's perception on a product quality into a tolerance synthesis scheme at the early design stage Second. how ran component tolerances and assembly tolerance be optimized in a simultaneous way? To answer these questions. this article presents the customer-driven concurrent tolerance synthesis which is facilitated by the notion of truncated distribution and the use of mathematical programming techniques. while adopting the major principles of Tagurhl philosophy. The work presented in the article is an effort to gain insight, which can be useful in practice when setting up guidelines for an overall tolerance synthesis.

  • PDF

State-Monitoring Component-based Fault-tolerance Techniques for OPRoS Framework (상태감시컴포넌트를 사용한 OPRoS 프레임워크의 고장감내 기법)

  • Ahn, Hee-June;Ahn, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.780-785
    • /
    • 2010
  • The OPRoS (Open Platform for Robotic Services) framework is proposed as an application runtime environment for service robot systems. For the successful deployment of the OPRoS framework, fault tolerance support is crucial on top of its basic functionalities of lifecycle, thread and connection management. In the previous work [1] on OPRoS fault tolerance supports, we presented a framework-based fault tolerance architecture. In this paper, we extend the architecture with component-based fault tolerance techniques, which can provide more simplicity and efficiency than the pure framework-based approach. This argument is especially true for fault detection, since most faults and failure can be defined when the system cannot meet the requirement of the application functions. Specifically, the paper applies two widely-used fault detection techniques to the OPRoS framework: 'bridge component' and 'process model' component techniques for fault detection. The application details and performance of the proposed techniques are demonstrated by the same application scenario in [1]. The combination of component-based techniques with the framework-based architecture would improve the reliability of robot systems using the OPRoS framework.

Image Classification Method using Independent Component Analysis and Normalization (독립성분해석과 정규화를 이용한 영상분류 방법)

  • Hong, Jun-Sik;Ryu, Jeong-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.629-633
    • /
    • 2001
  • In this paper, we improve noise tolerance in image classification by combining ICA(Independent Component Analysis) with Normalization. When we add noise to the raw image data the degree of noise tolerance becomes N(0, 0.4) for PCA and N(0, 0.53) for ICA. However, when we use the preprocessing approach the degree of noise tolerance after Normalization becomes N(0, 0.75), which shows the improvement of noise tolerance in classification.

  • PDF

A Fault-Tolerant Scheme Based on Message Passing for Mission-Critical Computers (임무지향 컴퓨터를 위한 메시지패싱 고장감내 기법)

  • Kim, Taehyon;Bae, Jungil;Shin, Jinbeom;Cho, Kilseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.762-770
    • /
    • 2015
  • Fault tolerance is a crucial design for a mission-critical computer such as engagement control computer that has to maintain its operation for long mission time. In recent years, software fault-tolerant design is becoming important in terms of cost-effectiveness and high-efficiency. In this paper, we propose MPCMCC which is a model-based software component to implement fault tolerance in mission-critical computers. MPCMCC is a fault tolerance design that synchronizes shared data between two computers by using the one-way message-passing scheme which is easy to use and more stable than the shared memory scheme. In addition, MPCMCC can be easily reused for future work by employing the model based development methodology. We verified the functions of the software component and analyzed its performance in the simulation environment by using two mission-critical computers. The results show that MPCMCC is a suitable software component for fault tolerance in mission-critical computers.

Fault Tolerance Design of Uplink Command Processor (상향링크 명령 처리기의 결함 허용 설계)

  • Gu, Cheol Hoe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.95-100
    • /
    • 2003
  • Electronic equipment used in satellites are demanding extremely high reliability, so they should be designed to have immunity for some critical faults by using redundancy component. Generally, Communication satellites are assigned to meet the 15 years mission lifetime, of the analysis about faults must be performed to electronic equipments of satellite. This paper is a summary of the fault tolerance design research of command processor, the improvement of reliability and trade-off study of fault tolerance design result. The reliability prediction value of the satellite component used in this research was taken from Koreasat 3 and Kompsat 1. It is important to perform many trade-off studies for fault tolerance design, especially to choose the most proper fault tolerance method for the specified fault scenario.

Formation Of Tolerance Of Higher Education Seekers As The Main Feature Of A Modern Specialist

  • Fabian, Myroslava;Kuzmenko, Nadiia;Zamrozevych-Shadrina, Svitlana;Perevozniuk, Viktoriia;Tolcheyeva, Tetiana;Kramarenko, Iryna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.289-293
    • /
    • 2022
  • "Tolerance" is considered as an important professional quality of a modern specialist, which is manifested in an active moral position and readiness for constructive interaction with other participants in the pedagogical process; characterized by the manifestation of humanity, tolerance, friendliness, focus on resolving conflict situations in the professional sphere on a non-violent basis. The article considers scientific approaches to understanding the phenomenon of "tolerance". There are a number of factors that significantly affect the formation of tolerance in students. The way to the formation of tolerance is the rejection of social prejudices, negative social stereotypes, the development of an objective attitude to man regardless of his individual characteristics, the formation of skills of tolerant interpersonal interaction, the use of lectures, discussions, games and training in educational work. The purpose of this article is to highlight communicative tolerance as a necessary component of pedagogical practice of future professionals. It was emphasized that tolerance is the basis of religious tolerance and peace, prevention of all kinds of extremism, which are of particular importance for a multinational and multi-religious Ukraine.

Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition (Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상)

  • Kim, Hee-Woon;Yoon, Jin-Gyu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

The Study on the System of Improving the Assembly Tolerance of Cellphone Camera Module (휴대폰 카메라 모듈의 조립공차 개선 시스템에 관한 연구)

  • Ye, In-Soo;Cheong, Seon-Hwan;Choi, Seong-Dae;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-63
    • /
    • 2010
  • Tolerance analysis is one of the most important processes to improve the image quality of products. High resolution camera module for mobile phones needs precision assembly technology since the module becomes smaller and thinner. This paper will focus on the unit tolerance and the assembly tolerance which can affect the performance of the module. Lens shading and relative illumination were used to evaluate the optical axis scatter for each component on camera and estimate the assembly yield rate based on the evaluation result. A program was developed to analyze the impact on optical axis by each module, then to optimize the dimensions and tolerance for reducing the scatter of optical axis assembly. Through the simulation, though a rate of relative illumination was declined in where optical axis is displaced $100{\mu}m$ from sensor center, MTF performance is not influenced by increasing in optical axis displacement. It was seen that assembly yield was improved in result of simulation after correcting optical axis tolerance.

Mathematical Representation of Geometric Tolerances : Part 1 (기하 공차의 수학적 표현 : 1편)

  • Park, Sangho;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.78-89
    • /
    • 1996
  • Every mechanical component is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums. Since the range of shape variation can be represented by the variation of the coordinate system attached to the shape, the transformation matrix of the coordinate system would mathematically express the range of shape variation if the interval numbers are inserted for the elements of the transformation matrix. For the shape entity specified by the geometric tolerance with reference to datums, its range of variation can be also derived by propagating the transformation matrices composed of interval numbers. The propagation depends upon the order of precedence of datums.

  • PDF

Tolerance Range Analysis of Fish on Chemical Water Quality in Aquatic Ecosystems

  • Kim, Jeong-Kyu;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.459-470
    • /
    • 2010
  • In this study, we analyzed fish tolerance guilds in mainstems and tributaries of 65 streams and rivers arid their relations to water quality using dataset sampled from April to November, 2009. For the study, water quality parameters including biochemical oxygen demand (BOD), electric conductivity (EC), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen ($NH_3$-N), nitrate nitrogen ($NO_3$-N) and phosphate phosphorus ($PO_4$-P) were analyzed in the laboratory and also tolerance ranges in 3 category fishes of sensitive, intermediate, and tolerant species with high abundance were analyzed. According to fish guild analysis, tolerant species was 58% of the total community and the proportion of omnivore species was 63% of the total, indicating a degradation of habitats and water quality. Water quality was shown typical longitudinal gradients from the headwater to the down-river; TN and TP increased toward the down-rivers except for the big point-source area and ionic contents, based on, electric conductivity showed same pattern. Tolerance guild analysis of 9 major species with high abundance indicated that sensitive groups had narrower tolerance range in the water quality than the groups of intermediate and tolerant species. In contrast, tolerant groups including Zacco platypus, Carassius auratus, and Opsarichthys uncirostris amurensis had wider tolerance ranges than the groups of sensitive and intermediate species. Thus, each group was evidently segregated from the tolerance levels. Principal Component Analysis (PCA) employed for the relations of water quality to fish species in each groups suggests that water quality had highest eigenvalues with fish species in the 1st axis of the PCA and nitrogen (TN, $NH_3$-N, $NO_3$-N) and phosphorus (TP) were key components differentiating three groups of sensitive, intermediate and tolerance guilds.