• Title/Summary/Keyword: component testing

Search Result 586, Processing Time 0.027 seconds

Vulnerability of roofing components to wind loads

  • Jayasinghe, N.C.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.321-335
    • /
    • 2011
  • The vulnerability of roofing components of contemporary houses built in cyclonic regions of Australia is assessed for increasing wind speeds. The wind loads and the component strengths are treated as random variables with their probability distributions derived from available data, testing, structural analysis and experience. Design details including types of structural components of houses are obtained from surveying houses and analyzing engineering drawings. Wind load statistics on different areas of the roof are obtained by wind tunnel model studies and compared with Australian/New Zealand Standard, AS/NZS 1170.2. Reliability methods are used for calculating the vulnerability of roofing components independently over the roof. Cladding and batten fixings near the windward gable edge are found to experience larger negative pressures than prescribed in AS/NZS 1170.2, and are most vulnerable to failure.

High-speed Microcantilever Resonance Testing on the Young's Modulus of a Nanoscale Titanium Film (고속 마이크로 외팔보 공진시험을 통한 나노스케일 티타늄 박막의 탄성계수 평가)

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.392-397
    • /
    • 2017
  • The Young's modulus of a nanoscale titanium (Ti) thin-film was evaluated using a high-speed microcantilever resonating at the megahertz frequency in the present study. A 350 nm thick Ti film was deposited on the surface of a silicon microcantilever, and the morphology of the film was analyzed using the atomic force microscopy. The microcantilever was excited to resonate using an ultrasonic pulser that generates tone burst signals and the resonance frequency shift induced by the deposition of Ti was measured using a Michelson interferometer. The Young's modulus was determined through a modal analysis using the finite element method and the result was validated by the nanoindentation testing, showing good agreement within a relative error of 1.0%. The present study proposes a nanomechanical characterization technique with enhanced accuracy and sensitivity.

Manufacturing Technology of Thin Foil Tensile Specimen Using CIP and Mechanical Property Measurement Technology (냉간 등방압 성형기를 이용한 미세박판 인장시편의 가공 및 기계적 물성측정 기술)

  • Lee N.K.;Park H. J.;Kim S. S.;Lee H. W.;Hwang J. H.;Park J. H.;Lee H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.509-513
    • /
    • 2005
  • This paper is concerned with manufacturing technology of thin foil tensile specimen using CIP(Cold Isostatic Press) and measurement of precision mechanical properties using micro tensile testing. We can get a burr free micro metallic thin foil specimen using this technology. For testing mechanical property of this micro thin foil, we use a nano scale material testing machine that was developed by KITECH. In this paper, micro tensile specimens of nickel and copper thin foil are fabricated with CIP and precision mechanical properties of these materials could be measured. We will expect precision mechanical property of micro/nano material and component.

Neural Network Approach to Automated Condition Classification of a Check Valve by Acoustic Emission Signals

  • Lee, Min-Rae;Lee, Joon-Hyun;Song, Bong-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.509-519
    • /
    • 2007
  • This paper presents new techniques under development for monitoring the health and vibration of the active components in nuclear power plants, The purpose of this study is to develop an automated system for condition classification of a check valve one of the components being used extensively in a safety system of a nuclear power plant. Acoustic emission testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disc movement for valve failure such as wear and leakage due to foreign object interference in a check valve, It is clearly demonstrated that the evaluation of different types of failure types such as disc wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters, It is also shown that the leak size can be determined with an artificial neural network.

Clinical Significance and Interpretation of Allergen-Specific IgE Testing in Regard to Food Allergy (식품 알레르기에서 특이 IgE 검사의 유용성 및 해석)

  • Hyun Jung Jin
    • The Korean Journal of Medicine
    • /
    • v.99 no.3
    • /
    • pp.145-148
    • /
    • 2024
  • Food allergy is an adverse reaction that occurs after ingesting food and is caused by an aberrant immune response. Taking a detailed medical history is the most important part of diagnosing food allergies. When an immunoglobulin E (IgE)-mediated food allergy is suspected, food-specific IgE testing can confirm the diagnosis. Allergen skin-prick tests or serum tests for specific IgE should be considered as the first line of testing, and depending on the offending food, a further prick-to-prick test with fresh food or a component-resolved diagnostic test may be helpful. Interpretation of the results should be based on the patient's medical history.

The evaluation of measurement system for high power tests (대전력시험에 사용되는 측정시스템의 평가)

  • Lee, Dong-Jun;Jung, Heung-So;Kim, Won-Man;Kim, Sun-Koo;Ra, Dae-Ryeol;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.286-288
    • /
    • 2002
  • The rapid development of measurement systems for high power tests makes it possible to measure signals as well as analyze with the help of computer. Also, methods to evaluate such measurement systems are required recently. Uncertainty has been regarding as the most important factor in evaluating the measurement systems. Because of the character of the measurement systems for high power tests. the uncertainty shall be evaluated by each component. If the uncertainty evaluated by each component, it is convenient to evaluate total uncertainty of the measurement systems according to each component setting's combination. In this paper each component of high current measurement system of high power testing Dept. II in Korea Electrotechnology Research Institute is evaluated except sensors such as shunts and CTs. The total uncertainty of the measurement systems can be determined by that of each component including uncertainty of sensors.

  • PDF

Structural damage detection by principle component analysis of long-gauge dynamic strains

  • Xia, Q.;Tian, Y.D.;Zhu, X.W.;Xu, D.W.;Zhang, J.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.379-392
    • /
    • 2015
  • A number of acceleration-based damage detection methods have been developed but they have not been widely applied in engineering practices because the acceleration response is insensitive to minor damage of civil structures. In this article, a damage detection approach using the long-gauge strain sensing technology and the principle component analysis technology is proposed. The Long gauge FBG sensor has its special merit for damage detection by measuring the averaged strain over a long-gauge length, and it can be connected each other to make a distributed sensor network for monitoring the large-scale civil infrastructure. A new damage index is defined by performing the principle component analyses of the long-gauge strains measured from the intact and damaged structures respectively. Advantages of the long gauge sensing and the principle component analysis technologies guarantee the effectiveness for structural damage localization. Examples of a simple supported beam and a steel stringer bridge have been investigated to illustrate the successful applications of the proposed method for structural damage detection.

Workflow Oriented Domain Analysis (워크플로우 지향 도메인 분석)

  • Kim Yun-Jeong;Kim Young-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.54-63
    • /
    • 2006
  • In this paper we will propose a domain analysis methodology that uses an extended workflow mechanism based on dynamic modeling to solve problems of a traditional domain analysis on legacy systems. This methodology is called WODA(Workflow Oriented Domain Analysis). Following procedures on WODA, we can identify common/uncommon component, and also extract the cluster of components. It will be effectively reusable on developing new systems with these components. With our proposed component testing metrics, we can determine highly reusable component/scenario on identifying possible scenarios of the particular system. We can also recognize most critical/most frequent reusable components and prioritize possible component scenarios of the system. This paper contains one application of UPS that illustrates our autonomous modeling tool, WODA.

  • PDF

The Design and Implementation of Storage and Retrleval System of Software Components based on Software reuse rates (소프트웨어 재사용율에 근거한 소프트웨어의 구성요소의 저장과 검색 시스템의 설계와 구현)

  • 오상엽;최우승;김홍진
    • KSCI Review
    • /
    • v.2 no.2
    • /
    • pp.7-18
    • /
    • 1996
  • In this paper library is proposed to store and retrieve the software components, in addition to that designed and implemented the user interface for management and control of this library. Applying components to this library for version control, component's quantitative testing are processed. In the case of user selection of component's a high quantative rate components can be selected.

  • PDF

Development of a Power Plant Simulation Tool Based on Object-Oriented Modeling (객체지향 모델링에 기반한 발전소 시뮬레이션 툴 개발)

  • 전상규;손기헌
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.136-140
    • /
    • 2004
  • A power-plant simulation tool has been developed for training the plant operators and testing a plant control system. The simulation tool is composed of a graphic editor, a component model builder and a system simulation solver. Such new programing techniques as object-oriented modeling and GUI(Graphical User Interface) are employed in developing the simulation tool. The graphic editor is based on the OpenGL library for effective implementation of GUI while the component model builder is based on object-oriented programming for efficient generalization of component models. The developed tool has been verified through the simulation of a real power plant.

  • PDF