• Title/Summary/Keyword: component reliability data

Search Result 314, Processing Time 0.031 seconds

Improved PCA method for sensor fault detection and isolation in a nuclear power plant

  • Li, Wei;Peng, Minjun;Wang, Qingzhong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.146-154
    • /
    • 2019
  • An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of $T^2$ and Q statistics. Finally, the effects of the proposed data pre-processing and false alarm reducing techniques are evaluated with sensor measurements from a real NPP. They are proved to be greatly beneficial to the improvement on the reliability and stability of PCA model. Meanwhile various sensor faults are imposed to normal measurements to test the FDI ability of the PCA model. Simulation results show that the proposed PCA model presents favorable performance on the FDI of sensors no matter with major or small failures.

Lifetime Assessment of Electronic Watt-hour Meters (전자식 전력량계의 수명평가)

  • Seol, Ieel-Ho;Park, Jung-Won
    • Journal of Applied Reliability
    • /
    • v.9 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Recently mechanical watt-hour meters are being replaced by electronic watt-hour meters. The replacement period of mechanical watt-hour meters is 7 years. This period is based on long term historical data. The replacement period of electronic watt-meters is also 7 years. This period is determined using the replacement period of mechanical watt-hour meters. However lifetime of mechanical watt-hour meters is different from the lifetime of electronic meters. In order to determine desirable replacement period of electronic watt-hour meters, accelerated life tests of major components in electronic watt-hour meters were performed. The test results showed that LCD was the component which had the shortest lifetime. In this paper, lifetime of electronic watt-hour meters manufactured by 3 company was estimated and life test standard for LCD was developed.

  • PDF

A case study on the optimal maintenance interval or I&C component for YGN Units l&2 (영광 1,2호기 계측기 정비 주기 최적화에 관한 적용사례)

  • 최광희;정현종;이상용;김성훈;김재오
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.195-195
    • /
    • 2002
  • 영광 원자력발전소 1,2호기의 계측제어기기에 대한 예방정비 최적화 분석을 수행중 기기의 정비주기 설정을 위하여 모델별 고장율 분석을 통하여 권고 주기를 산정 하였다. 현재 정비주기는 각 발전소 및 산업설비에서 제작사 지침의 적용과 현장 경험에 의한 선정이 이루어지고 있으나 제작사에 의한 주기 제시가 전체적으로 미미하여 경험에 크게 의존하고 있는 상태이다. 이에 본 논문에서는 정비주기의 최적화를 위하여 계측기 모델별 고장내용의 분석을 통한 data를 NCSL S2의 단순화 모델인 Jackson method를 기본으로 적용하여 최적주기 산정작업을 수행한 사례를 기술하고자 한다.

  • PDF

Reliability analysis test of high brightness micro optical component and module (고휘도 마이크로 광부품 / 모듈의 신뢰성 분석 시험)

  • Lee N.K.;Lee H.J.;Choi S.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.535-536
    • /
    • 2006
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, reliability data such as mechanical, optical, thermal property, etc is the basic property. In this paper, it is measured that is material properties of main BLU(Back Light Unit) components in LCD(Liquid Crystal Display). The pattern shape of prism sheet, diffuser film and reflective plate are measured by variable 3D scanning equipments. It is researched which is the method to measure an optimal 3D pattern shape in each components.

  • PDF

Vulnerability of roofing components to wind loads

  • Jayasinghe, N.C.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.321-335
    • /
    • 2011
  • The vulnerability of roofing components of contemporary houses built in cyclonic regions of Australia is assessed for increasing wind speeds. The wind loads and the component strengths are treated as random variables with their probability distributions derived from available data, testing, structural analysis and experience. Design details including types of structural components of houses are obtained from surveying houses and analyzing engineering drawings. Wind load statistics on different areas of the roof are obtained by wind tunnel model studies and compared with Australian/New Zealand Standard, AS/NZS 1170.2. Reliability methods are used for calculating the vulnerability of roofing components independently over the roof. Cladding and batten fixings near the windward gable edge are found to experience larger negative pressures than prescribed in AS/NZS 1170.2, and are most vulnerable to failure.

Analyzing of the Time varying failure rate of components of power distribution system using Weibull distribution (와이블 분포를 이용한 배전설비기기의 시변 고장률 분석)

  • Lee, Hee-Tae;Kim, Jae-Chul;Mon, Jong-Fil;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.272-274
    • /
    • 2003
  • Distribution system reliability evaluation estimates by approach methods such as Makove modelling or Monte Carlo simulation, equation of state and failure rate that is on one basic data used to these assessment technique is described as probability of average value. because average failure rate equipment device is aged as time goes by but there is shortcoming that such used failure rate does not evaluate thing which is correct in reliability change hereafter. In this paper, failure rate displayed that apply aging to basis equipment device by passing time using Weibull distribution one of life evaluation method and for express aging of component from utility's failure database.

  • PDF

Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP

  • Mamdikar, Mohan Rao;Kumar, Vinay;Singh, Pooja
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1213-1220
    • /
    • 2022
  • The Emergency Diesel Generator (EDG) is a critical and essential part of the Nuclear Power Plant (NPP). Due to past catastrophic disasters, critical systems of NPP like EDG are designed to meet high dependability requirements. Therefore, we propose a framework for the dynamic reliability assessment using the Fault Tree and the Dynamic Bayesian Network. In this framework, the information of the component's failure probability is updated based on observed data. The framework is powerful to perform qualitative as well as quantitative analysis of the system. The validity of the framework is done by applying it on several NPP systems.

Development of Yin-Deficiency Questionnaire and Examine the Reliability and Validity (음허증 측정도구의 개발 및 신뢰도 타당도 검정)

  • Lee Sang Jae;Park Jong Bae;Lee Song Shil;Kim Kwang Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.376-380
    • /
    • 2004
  • The purpose of this study is the develop a questionnaire for measuring Yin-Deficiency and examine the reliability and validity for its' value as a barometer for evaluating Yin-Deficiency. Questionnaire was developed according to the symptoms of Yin-Deficiency suggested in the 'Standardization of diagnostic terms and requirements of Korean Medicine', With and as a reference, each symptom has been worked on to be put on the questionnaire. Visual analogue scales(VAS) was used as a barometer for measuring frequency of manifestation of symptoms. A study was performed to measure validity and reliability of the final questionnaire for analysis. reliability of YinDQ was measured by Cronbach's alpha coefficient and test-retest method. This study utilized factor analysis and clinical validity for evaluation of validity. For the purpose of decreasing the amount of data-the number of factors, and at the same time minimize the loss of information factor analysis was performed Component factors were extracted using Principal Component Analysis. This study evaluated the clinical validity for examination of difference between the normal group and the patient group. Evaluation on the's internal consistency showed strong internal consistency with value of 0.8615. reliability from test-rest with three-week interval, followed by comparisons of the correlation coefficient and mean values of each item between the two. The Spearman correlation coefficient was 0.54-0.79. By factor analyse two factors with Eigen value of greater than 2.2 were selected. Factor 1 consists of items of 'irritable fever on the five Hearts', 'flushing of the zygomatic region in the afternoon', 'tidal fever', 'night sweats', and 'dryness on the mouth or the throat'. Factor two consists of items of 'emaciation', 'dizziness', 'insomnia', 'decreased amount of urine with yellowish color', and 'constipation'. The comparison between the patient group and the normal group showed significant differences for every ten questions. The results implies that YinDQ is a barometer with sufficient reliability and validity. The questionnaire for Yin-Deficiency may not be enough to replace the specific differential diagnosis by a doctor of Oriental medicine. Nevertheless, it can be effectively utilized as an assisting method in consultation or a method of measuring the degree of Yin-Deficiency in a group.

Analysis of error source in subjective evaluation results on Taekwondo Poomsae: Application of generalizability theory (태권도 품새 경기의 주관적 평가결과의 오차원 분석: 일반화가능도 이론 적용)

  • Cho, Eun Hyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.395-407
    • /
    • 2016
  • This study aims to apply the G-theory for estimation of reliability of evaluation scores between raters on Taekwondo Poomsae rating categories. Selecting a number of game days and raters as multiple error sources, we analyzed the error sources caused by relative magnitude of error variances of interaction between the factors and proceeded with D-study based on the results of G-study for optimal determination of measurement condition. The results showed below. The estimated outcomes of variance component for accuracy among the Taekwondo Poomsae categories with G-theory showed that impact of error was the biggest influence factor in raters conditions and in order of interaction in subjects and between subjects, also impact of variance component estimation error on expression category was the major influence factor in interaction and in order of the between subjects and raters. Finally, the result of generalizability coefficient estimation via D-study showed that measurement condition of optimal level depend on the number of raters was 8 persons of raters on accuracy category, and stable reliability on expression category was gained when the raters were 7 persons.

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.