• Title/Summary/Keyword: component offloading

Search Result 3, Processing Time 0.016 seconds

Adaptive Application Component Mapping for Parallel Computation Offloading in Variable Environments

  • Fan, Wenhao;Liu, Yuan'an;Tang, Bihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4347-4366
    • /
    • 2015
  • Distinguished with traditional strategies which offload an application's computation to a single server, parallel computation offloading can promote the performance by simultaneously delivering the computation to multiple computing resources around the mobile terminal. However, due to the variability of communication and computation environments, static application component multi-partitioning algorithms are difficult to maintain the optimality of their solutions in time-varying scenarios, whereas, over-frequent algorithm executions triggered by changes of environments may bring excessive algorithm costs. To this end, an adaptive application component mapping algorithm for parallel computation offloading in variable environments is proposed in this paper, which aims at minimizing computation costs and inter-resource communication costs. It can provide the terminal a suitable solution for the current environment with a low incremental algorithm cost. We represent the application component multi-partitioning problem as a graph mapping model, then convert it into a pathfinding problem. A genetic algorithm enhanced by an elite-based immigrants mechanism is designed to obtain the solution adaptively, which can dynamically adjust the precision of the solution and boost the searching speed as transmission and processing speeds change. Simulation results demonstrate that our algorithm can promote the performance efficiently, and it is superior to the traditional approaches under variable environments to a large extent.

A Prediction-based Dynamic Component Offloading Framework for Mobile Cloud Computing (모바일 클라우드 컴퓨팅을 위한 예측 기반 동적 컴포넌트 오프로딩 프레임워크)

  • Piao, Zhen Zhe;Kim, Soo Dong
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • Nowadays, mobile computing has become a common computing paradigm that provides convenience to people's daily life. More and more useful mobile applications' appearance makes it possible for a user to manage personal schedule, enjoy entertainment, and do many useful activities. However, there are some inherent defects in a mobile device that battery constraints and bandwidth limitations. These drawbacks get a user into troubles when to run computationally intensive applications. As a remedy scheme, component offloading makes room for handling mentioned issues via migrating computationally intensive component to the cloud server. In this paper, we will present the predictive offloading method for efficient mobile cloud computing. At last, we will present experiment result for validating applicability and practicability of our proposal.

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.