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Abstract

Distinguished with traditional strategies which offload an application's computation to a
single server, parallel computation offloading can promote the performance by simultaneously
delivering the computation to multiple computing resources around the mobile terminal.
However, due to the variability of communication and computation environments, static
application component multi-partitioning algorithms are difficult to maintain the optimality of
their solutions in time-varying scenarios, whereas, over-frequent algorithm executions
triggered by changes of environments may bring excessive algorithm costs. To this end, an
adaptive application component mapping algorithm for parallel computation offloading in
variable environments is proposed in this paper, which aims at minimizing computation costs
and inter-resource communication costs. It can provide the terminal a suitable solution for the
current environment with a low incremental algorithm cost. We represent the application
component multi-partitioning problem as a graph mapping model, then convert it into a
pathfinding problem. A genetic algorithm enhanced by an elite-based immigrants mechanism
is designed to obtain the solution adaptively, which can dynamically adjust the precision of the
solution and boost the searching speed as transmission and processing speeds change.
Simulation results demonstrate that our algorithm can promote the performance efficiently,
and it is superior to the traditional approaches under variable environments to a large extent.
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1. Introduction and Related Works

Computation offloading migrates the computation of an application from

resource-constrained mobile terminals to external relative resourceful computation resources
[1]. It can effectively enhance the capacities of mobile terminals to support diverse
computation-occupying and energy-consuming mobile applications, whereas, whose
requirements can not sufficiently satisfied by the embedded systems of mobile terminals with
limited computation and energy capacities. The contradition between mobile terminal and
mobile application becames severe especially in current and future periods that the scale of
mobile internet industry increases explosively.

Traditional works for computation offloading mainly focus on the computation offloading
strategies that offload the computation of an application to a single remote server [2][3][4].
However, the performance can be further promoted by simultaneously offloading the
computation to multiple computation resources outside of the terminal, which is called parallel
computation offloading. In this way, the degree of parallelism in the application can be utilized
to a great extent, so that the computation and energy efficiency of the application can be then
improved. In this area, most of the existing research basically considers the computation
resources as multiple remote severs [5][6][7]. In the scenarios of pervasive computing, which
becomes more and more popularized along with the development of IoT technologies, the
generalized computation devices surround the terminal, such as laptops, PCs, tablets, wireless
routers, air conditioners, printers, TVs, base stations, etc., can be taken as the computation
resources for parallel computation offloading [8][9]. These computation devices are connected
with the terminal via multiple heterogeneous network access technologies, such as WiFi,
Bluetooth, Zigbee, 3G/LTE, etc.

Application component multi-partitioning algorithm is the core in parallel computation
offloading. The application is abstracted as multiple components according to its structure.
Based on the algorithm, these components are partitioned properly into multiple clusters, and
each cluster is offloaded to its corresponding computation device.

In above scenarios, the computation and communication environments are variable. On the
one hand, the computation capabilities of computation devices are diverse. The devices are
impacted by the scale of computation that they are coping with currently. On the other hand,
the qualities of the communication connections between the terminal and the computation
devices are diverse, and they are influenced by the changes of wireless environments. Thus,
static application component multi-partitioning algorithms are difficult to keep the optimality
of their solutions in time-varying envirionments, whereas, over-frequent algorithm executions
triggered by the changes of environments may bring excessive algorithm costs. Thus, a good
application partitioning algorithm for these scenarios should provide the solution adaptively
base on current environment, in order to prolong the effectiveness of the solution and maintain
the level of the algorithm cost.

In regard to the existing research in this area, [10] proposes a computation offloading
middleware for Android platform, where the algorithm takes transmission cost, memory cost
and CPU cost as parameters, and models a 0-1 linear programming optimization problem.
When the environmental parameters change, the solving process of the optimization problem
is triggered to obtain the optimal solution for the new environment. However, the optimization
for the algorithm cost, which is generated frequently and may consume a lot, is not focused.
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[11] decides whether a function in the application should be offloaded based on a time
threshold, which are computed according to the current environmental parameters. Still, the
time threshold for each function is computed at every time when the environment changes,
thus it leads to a high algorithm cost. [5] designs an adaptive k + 1 application partitioning
algorithm. It considers memory cost, CPU utility and bandwidth. Based on graph partitioning
theory, it partitions an application into one cluster running locally and k clusters be offloaded
to multiple remote severs. The adaptivity of the algorithm for environment changes is not
mentioned. [12] proposes an adaptive computation offloading engine, which employs a fuzzy
logic model. The model evaluates the memory consumption of the application. Base on the
model, it decides if the application should be offloaded. Although, the algorithm only
considers the memory consumption, and its execution is triggered by the change of the
memory, so over-frequent executions may appear when the variation of memory usage
increases. [13] designs two application partitioning algorithms for small-scale and large-scale
applications. The partitioning result is based on the variation of bandwidth. If the value of the
bandwidth in current environment falls into the interval of the bandwidth threshold, then the
algorithm re-execution will not be triggered. However, only the adaptivity of bandwidth is
considered, and the adaptivity inside of the algorithm is still not investigated.

In this paper, we propose an adaptive application component mapping algorithm for
parallel computation offloading in variable environments, which aims at minimizing
computation costs and inter-resource communication costs and can provide the terminal a
suitable solution for the period of the current environment with a low incremental algorithm
cost. The algorithm abstracts the application component multi-partitioning problem as a graph
mapping model, which consists of an application component graph and a computation device
graph. Thus, the problem is converted into a pathfinding problem that finds out a proper path
from the starting node to the end node in the search network. A genetic algorithm enhanced by
an elite-based immigrants mechanism is designed to obtain the solution adaptively, which can
dynamically adjust the precision of the solution and boost the searching speed as
communication and computation parameters vary. The transmission speeds of network
connections and the processing speeds of computation devices are chosen as variable
parameters to represent the varying communication and computation environments.
Simulation results validate the high adaptivity of our algorithm, demonstrating that the
algorithm reduces the computation costs and inter-resource communication costs significantly,
and it only takes a low incremental algorithm cost compared with traditional approaches. Our
algorithm can be applied to the computation offloading frameworks and middlewares such as
[2][10][14], etc.

The major contributions of our paper are as follows: (a) we abstract the the application
component multi-partitioning problem as a graph mapping model with the transmission speeds
of network connections and the processing speeds of computation devices considered as
variable parameters, and convert the problem into a pathfinding problem; (b) we design a
genetic algorithm enhanced by an elite-based immigrants mechanism to obtain the solution of
the problem adaptively through dynamically adjusting the precision of the solution and
boosting the searching speed, which can provide the suitable solution only with a low
incremental algorithm cost.

The rest of this paper is organized as follows: Section Il presents the graph mapping model
for the application component multi-partitioning problem, where the application component
graph and the computation device graph are defined. The genetic algorithm enhanced by
elite-based immigrants is described in Section 111, including all steps of the algorithm for
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solving the pathfinding problem. Section IV shows the simulation results and the evaluations
of our algorithm. Our work is concluded in Section V.

2. Graph Mapping Model for Application Component Multi-partitioning

An application running in a mobile terminal can be expressed as an undirected weighted graph
[15] according to its program structure. The graph is called application component graph
(ACG), which consists of vertices and edges. The vertices denote the components of the
application with a certain granularity, such as classes, objects, modules, interfaces, functions
or threads. Additionally, the vertices are from two categories: offloadable vertices or
unoffloadable vertices. The formers are the ones that can be executed either in the terminal or
in any one of the outside computation devices, whereas, the latter are the ones that can only run
in the terminal, such as the components which operate the terminal's I/O hardware or are in
charge of user interfaces, etc. An edge connecting two vertices in the ACG represents the
communication between the two components that the two vertices correspond to. The weight
of a vertex is defined as the amount of the computation that the corresponding component
generates, and the weight of an edge is defined as the amount of data that needs to be
transmitted between the two corresponding components that it connects with, if the two
components are allocated to different computation devices in parallel computation offloading.

We use 6@ = (V@ y® v E@ §@ g@)to express the ACG of an application
with m vertices and n edges. V@ = {v{®, .., v} is the vertex set of G@. V¥ c V@ js
the subset including all offloadable components, and VIE“) c V@ js the subset including all
unoffloadable ones. E(@ = {el(“), .., e D} is the edge set of G(@. The weight sets of V(@ and
E@ are denoted by 8@ = {59, ...,6{%} and 8@ = (0¥, ...,0\P}, which contain the

amount of computation of each computation device and the amount of data transmitted
between two components if allocated differently, respectively.

In order to structurally express the relationships among vertices and edges in an ACG, an
upper triangular matrix H® with m rows and m columns is employed to represent the

existences and weights of edges between vertices. hy; represent the edge between v,g‘” and

v,(“). hy; = 0if k = [ or there is no edge between v}({a) and vl(“), whereas, hy; # 0ifk # 1
and there is an edge between v,Ea) and vl(a). Here, the value of hy, is equal to the weight of the

edge between v,i“) and vl(“). As an instance, an ACG is shown in 0, which consists of 5
vertices and 7 edges, and its H@ is

H@® = (1)

co oo
co oOR
cooR
C OO RRE
_m O

o

0 0

In the scenarios of the mobile terminal-centric ambient intelligence [16] developed by loT
technologies, the topology of the mobile terminal and its surrounding computation devices is
actually a star network, where the computation devices are connected with the terminal via
heterogenous networks, and the terminal is the center of the network. In the same way, the star
network can be also expressed as an undirected weighted graph, called computation device
graph (CDG), where the vertices denote the terminal and the computation devices, and the

(=)
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edges denote the network connections between the terminal and the computation devices. The
weight of a vertex represents the processing speed of the computation device that the vertex
corresponds to. Here, we use MIPS (Million Instructions Per Second) to quantify the

processing speed. The weight of an edge represents the data transmission speed of the network
connection between the terminal and the corresponding computation device. Here, we use
bandwidth (MB/s, Million Bytes per second) to quantify the transmission speed.

e© 7

v,© i v© “' v, ©
O]
:' Vs(a) ‘: ¢ unoffloadable component VS(C) 47 mobile terminal
s ‘ QO offloadable component O computation device
Application Component Graph Computation Device Graph

around the terminal

G© = (v E©,§) () is adopted to express a CDG with p vertices and p — 1 edges.

We express the vertex set of G(©) as V(©) = {vl(c), ...,vzﬁf)}, where the mobile terminal is

denoted by v fixedly. The edge set of G(© is expressed as E© = {ez(c),...,ezf,c)}. The
weight sets of V(© and E(© are defined as 8¢ = {57, ...,5,5”} and 89 = {67, ...,ngc)},

respectively, note that, the index of E(©) and 8(©) starts from 2 in order to maintain the

correspondence between the indexes of V() and E(©). As an instance, the topology of an CDG
with 4 computation devices surrounding the terminal is illustrated in 0.

The cost of a computation device is employed to measure the effect for offloading the
allocated components to the device, which is combined linearly by the computation time
consumed for the device processing the components, and the transmission time used for

(© ()

transmitting the components to the device. For a certain computation device v #FE VL, its
cost C; is formulated by
S, 87 L@, 6"
— ) O _ % €7 b €9
G=CG"+G" = ——5 Ao )
J J
where Cj(x) is the computation time of vj(c) , and Cj(y ) iis the transmission time of vj(c). m; and

¢; are defined as the subsets of 8@ and 0@, respectively. m; includes the weights of the

vertices corresponding to all components that are offloaded to vj(c). Similarly, ¢; contains the

weights of the edges corresponding to all the data that needs to be transmitted between vj(c)

and the terminal, note that, the data transmitted between two components are omitted if the
©

both of them are offloaded to the same v, since the cost of inter-component
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communications inside a computation device is very tiny and can be neglected. Cj(x) is

obtained by summing all weights in 7; and then dividing the sum by 6j(c), because the sum of

all weights in 7z; is the total amount of computation hosted by vj(c) in parallel computation

offloading, and 61.@ is the processing speed of vj(c). Cj(y ) is obtained by summing all weights

in ¢; and then dividing the sum by Gj(c), because the sum of all weights in ¢; is the total

amount of data needing to be transmitted from or to vj(c) in parallel computation offloading,

and 6].(6) is the data transmission speed of the network that vj(c) corresponds to. If vj(c) =9,

it means the computation device is actually the mobile terminal. In this case, the components

that are allocated to the terminal run locally, and they need no data transmission in parallel

computation offloading, so Cl(y) = 0. Therefore, the cost C, of vl(c) can be given by

2 (@ 51@
G =c = e @
1

After parallel computation offloading, the components of the application are offloaded to
different computation devices or remain in the terminal. In the star network, the components
hosted by each device are executed in parallel, thus the total cost is actually the maximum time
consumed among the computation devices and the terminal to complete the whole
computation of the application, and it can be formulated by

C= maxlsjsp C] (4)

It can be seen that the factors that impact C are r; and ¢, which form an application
component multi-partitioning result that decides whether a component should be offloaded,
and designates which component should be offloaded to which computation device. In this
paper, we convert the application component multi-partitioning problem into a graph mapping
problem. Thus, the multi-partitioning result is an mapping result that maps the vertices of the
ACG G to the vertices of the CDG G(©). The graph mapping can be defined as W: V(@ —
V(©, which must obey the following rules: (a) all vertices in V% are mapped to v fixedly
because they belong to unoffloadable components that can only run in the terminal; (b) A
vertex in Vé“) can be only mapped to a unique vertex in V() since duplications of components
are forbidden, which may disturb the synchronization of the application's execution if the same
component runs at different locations in parallel.

A matrix Z is employed to express the correspondences between vertices from V(% and
vertices from V(©) in a mapping result. Z is with m (the number of vertices in V(®) rows and
p (the number of vertices in V(¢)) columns, where the value of an element z;; at the ith row
and jth column is defined as

if v @ i ©
zi; = {1, if v;’ is mapped to v; )

0, otherwise
Therefore, with Formula (2), (3) and (5) substituted, the cost of a certain computation

device vj(c)or the terminal v{“can be rewritten as
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(21, (6{%z;) L R S (haal =21y

c® 4+ ¢ 5© MO o J*F
C' — ] J _ J i (6)
g, 2 (6172) =1
5© ) ] =
j

It can be observed that 7, ..., 7T, and ¢, ..., ¢, in Formula (2) and (3) are replaced by z;;
of Z in Formula (6).

The |ij —sz| in Formula (6) can be explained as follows: (a) if zy; # z;;, namely,
zij =0, z;; = 10or z,j = 1, z;; = 0, which means only one of the two components is mapped

to vj(c), then the data transmission time between them is considered; (b) if z;; = z;; = 0,

which means none of the two components is mapped to vj(c), so the data transmission time

between them is not considered since it is irrelevant with vj(c); (c) if zx; = z;; = 1, which

)

means both of the two components are offloaded to vj(c , S0 the data transmission time can be

omitted.

The objective of the parallel computation offloading is to find the optimal mapping result
Z™) which minimizes the total cost C, which can be formulated by

miny C = mZin(maxlstp Cj) @)

Formula (7) belongs to an combinatorial optimization problem [17], and is NP-hard
according to Formula (6). It is very complicated to solve the problem directly. Enormous costs
of searching and traversing need to be paid to find out the optimal solution from a large
number of feasible solutions. Thus, high-efficiency algorithms are required to handle the
complexity of the problem.

Besides, when the computation and communication environments are time-varying, a vital
issue that is hard to avoid is the effectiveness of the solutions provided by the algorithm. A
mapping result is generated based on the environment at the time when the algorithm launches,
so it may not keep optimal as the environment changes, and the solution from a last algorithm
execution will possibly expire very soon in a time-varying environment, at the moment, the
algorithm needs to be re-executed to obtain the solution for current environment. However, if
the frequency of the algorithm execution is too high, the algorithm cost will become a major
burden that, on the contrary, counteracts the performance promotion brought by the parallel
computation offloading; if the frequency is too low, the mapping result will deviate the
optimality for current environment, and the performance of parallel computation offloading
will deteriorate correspondingly. Therefore, there is a contradiction between the effectiveness
of solution and algorithm cost in time-varying environments. A high-efficiency algorithm
should balance the above two factors according to the environment characteristics adaptively,
and provide suitable mapping results with low algorithm costs.

3. Design of the Genetic Algorithm Enhanced by Elite-based Immigrants

A genetic algorithm enhanced by elite-based immigrants is designed specifically to handle the
optimization problem described in Formula (7). Firstly, we transform the optimization
problem into a pathfinding problem. A search network is constructed, which contains all
feasible paths. Then, we propose the chromosome representation, and describe each step used
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in the algorithm. Finally, we present the adaptivity mechanism employed by the algorithm,
which can dynamically adjust the precision of the solution and boost the searching speed as the
processing speeds of computation devices and the transmission speeds of network connections
change.

3.1 Pathfinding Problem

The solving process of the optimization problem is actually a searching process which finds
out the optimal solution from all feasible solutions. Here, the optimization problem is
transformed into a pathfinding problem, that is, a certain feasible solution is described by a
corresponding path. The components in V,E“) are unoffloadable and are mapped to the terminal
fixedly, so only the components in V(fa), which are offloadable, need to be considered in the
pathfinding problem. The number of components in Véa) is defined as m'. The search space of
the pathfinding problem can be denoted by a search network, which is a layered graph
consisting of multiple nodes according to the number of vertices in Vga) and the number of

vertices in V(€. These nodes are organized into m’ levels, and in each level, there are p nodes
locating from left to right. A node, which is at the ith (1 <i <m') level and the jth
(1 <j < p) location in the search network, represents a mapping from the ith component in

V‘Sa) to vj(c). A certain node at an upper level is associated with every node at the supper level.
Thus, a solution consists of the mappings for all vertices in V(ga), S0 it can be described as a

path which connects with the node at each level ordered from the 1st level to the m'th level in
the search network.

level m’

Fig. 3. The search network and a solution path

A path can be formulated by a sequence S with length m’, which consists of the nodes that
the path passes by in the search network. For example, a search network and a path in it are
shown in 0, where the path § =< Aip, A1y eeey A1 > is drawn by the red lines.

3.2 Genetic Algorithm Enhanced by Elite-based Immigrants

Our genetic algorithm enhanced by elite-based immigrants is developed based on a standard
genetic algorithm [18]. It involves several key steps: chromosome representation, population
initialization, selection, crossover, mutation, fitness evaluation and an adaptivity mechanism
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via elite-based immigrants. The solution of the optimization problem can be obtained by
executing the algorithm's workflow which is composed of the above steps.

As a heuristic search inspired from the process of natural evolution, our genetic algorithm
enhanced by elite-based immigrants manages the evolution process of a population. It
iteratively looks for the solution of the problem, updates the population and makes it denser
around the optimal solution. An individual in the population, called a chromosome, is an
arbitrary feasible solution for the problem, and gradually gets improved through the fitness
evaluation, crossover, mutation in every iteration. The adaptivity of the algorithm is based on
an elite-based immigrants mechanism. It dynamically adjusts the performance of the
algorithm according to the current environment, in this way, the solving process is promoted
by speeding up the searching for the solution with a proper precision. Finally, the optimal
solution (or near optimal solution) can be obtained when multiple iterations complete.

3.2.1 Chromosome Representation

A chromosome is used to represent a path in the search network, and its content corresponds to
the sequence of the path. A chromosome contains m’ genes, which are use to express the
nodes in the path. If node d;; is chosen by a path, its gene is at the ith location in the
chromosome, and the content of the gene is j. For example, the correspondence between the
sequence S of a path with length of 5 and its chromosome with 5 genes is shown in Fig. 4.

S =< dyz, dz1, O34, dgs, dsp > 3 114]15] 2

Sequence Chromosome

Fig. 4. The sequence of a path and its corresponding chromosome

For a search network with m’ levels and p locations at each level, we define a chromosome
R, with index k in current population as

Rk =< "2k 0 Tk >, Tik € {1,2, ,p} (8)

3.2.2 Population Initialization

A population is initialized at the start of the algorithm. Multiple different chromosomes are
randomly generated. Each of them contains a combination of genes. The number of
chromosomes in a population is defined as y, and the population U can be formulated by

U=< Rl'RZ""'R]/ > (9)

3.2.3 Fitness Evaluation

The fitness evaluation aims at evaluating the qualities of the chromosomes in U. The fitness of
a certain chromosome R, which is expressed by f, is the value computed from Formula (7)
with the values of its genes substituted. Note that, the lower f; is, the higher the quality of R,
will be.

3.2.4 Selection

The chromosomes with low fitness values are chosen from the current population through the
selection process, in order to promote the average quality of the population. Based on the
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fitness value, a stochastic tournament method is used to randomly and multiply generate the
subsets of chromosomes from the population. The subsets are called the groups of competitors.
The chromosome which possesses the best fitness in each group of competitors is selected
according to the following formula

R)(Lq) = arg min ({fll.flz, ...,fln}) (10)

where the number of groups is denoted by o. g is the index number of group, and it satisfies
1 < q < a. The number of chromosomes in a group is denoted by 7. A is the index of the best

chromosome in the group, and it satisfies Ae{ll,/lz,...,/ln}. Thus, Rﬁq) is the best
chromosome with index A in the gth group.

3.2.5 Crossover

The chromosomes, which are the bests in the groups of competitors, are chosen and bisected
into two sets A and B. The offspring of the population can be generated by the crossover
process. Two new chromosomes are formed through recombining one chromosome selected
from A and one chromosome selected from B. In the process of the recombination, some
locations in the chromosome are marked based on a probability p, and the genes of the two
chromosomes at these locations are exchanged correspondingly. As is shown in 0, two
offspring chromosomes are generated from the two parent chromosomes via the crossover.

before crossover after crossover

213 1]2] 4 215111311
A

3151 213]1 31312 2] 4

Fig. 5. An instance of the crossover of two chromosomes

3.2.6 Mutation

In order to avoid the solutions represented by the chromosomes in the population from
converging into a local optimal point, random mutations at random genes in some
chromosomes are carried out with a probability € in the process of mutation. The value of the
gene that is assigned to be mutated is replaced by a random value from 1 to p.

3.3 Adaptivity Mechanism

In a time-vary environment, the transmission speeds of the network connections between the
terminal and computation devices, the processing speeds of computation devices may change,
that is, the values of 8 and 8(°) in the optimization problem are variable, even during the
algorithm execution. Thus, an elite-based immigrants mechanism is used to adaptively adjust
the performance of the genetic algorithm. The idea of the mechanism is based on that the
current environment is relevant with its previous environment since the values of the
parameters in the current environment are the changes of those in its previous to some extent.
In most cases, the changes are relatively slight since the environment change is a continuous
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process, whereas, in rare cases, the changes may be very severe caused by some bursty factors,
such as wireless inferences, device overloads, etc. For the former, the feasible solutions for the
previous environment still have certain effectiveness in the current environment. The
elite-base immigrants mechanism chooses the elite chromosomes with low fitness values from
the chromosomes in the previous population with a proportion, and migrates them to the
current population to replace the same amount of bad chromosomes, which have high fitness
values. Thus, the searching speed for the current solution can be boosted since the quality of
chromosomes are improved, and the convergence to the optimal solution is promoted. For the
latter, the algorithm should be re-executed immediately since the solutions for the previous
environment have completely expired for the current environment with a huge difference.
Therefore, aiming at establishing a continuous mechanism to control relationship between the
proportion of elites and the intensity of environment change, which are denoted by ¢ and ¢,
respectively, ¢ should decrease with the increase of &, and vice versa.

In addition, the number of iterations in the algorithm can be also adjusted adaptively. The
more the number of iterations is, the higher the precision of the solution will be, conversely,
the less the number of iterations is, the lower the precision of the solution will be. In an
environment with frequent changes, the effectiveness of the solution is prior to the precision of
the solution, whereas, in an environment with occasional changes, the precision of the solution
is prior to the effectiveness of the solution. Therefore, the number of iterations, which is
denoted by 7, should decrease with the increase of &, and properly increase with the decrease
of €.

Thus,the relationships between ¢, T and & are formulated by

{ ? T % (11)
where ¢ is described by the change of the values of () and 8(©). There are multiple ways to
formulate ¢ according to different scenarios. Here, considering a time sequence expressed as
< ty,t,, ... >, for a certain time t,,, we give a formulation of ¢ as

p (1659 w)-65 0| p (162)-0 k0|
j=1 S(.C) j=2 §(C)
J J
= +(1-
§=p . a-p —

(12)
where Gj(c) (t,—1) and Bj(c)(tw_l) are the weights at time t,,_;, and 5j(c)(tw) and Hj(c)(tw)
are the weights at time ¢t,,. Sj(c) and éj(c) are the upper bounds of any Sj(c)(tw) and Hj(c)(tw),

respectively. 0 < B < 1 is used to balance the values of §(©) and 8(). It can be seen that ¢ is
the average proportion of the change of 8(©) and 8(¢) from time ¢t,,_, to t,,.

The numeric relationship between ¢, T and & should be based on Formula (11), and it
needs to be configured experientially according to the practical implementation of the
algorithm. Here, { is given by

(=1-¢ (13)
Similarly, t is formulated by
7 =7(035¢) 4 (1 — &)¢ino) (14)
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where 7(?%5€) js the basic number of iterations needed by the algorithm to obtain a solution,
and () is the upper bound of the incremental iterations. Thus, we can see that T varies in
the range [t(P#s®), r(base) 4 7(nA)] according to €.

3.4 Workflow of the Algorithm

The workflow of our genetic algorithm enhanced by elite-based immigrants is described in
Algorithm 1.

Algorithm 1 Genetic Algorithm Enhanced by Elite-based Immigrants

INPUT: &, 8 and (@
OUTPUT: Z®™
1. compute ¢ and 7 from the formulae based on Formula (11);

2. initialize U with (1 — {)y randomly generated chromosomes and {y elites from
the population at t,,,_1;

3. loop for t times

4 carry out fitness evaluation for each chromosome in U;

5 carry out selection via the stochastic tournament method;
6. carry out crossover with p;
7

8

9

carry out mutation with ¢;
end loop
obtain Z™ represented by the best chromosome in U.

Z™ is the solution obtained by the algorithm, which is possibly a sub-optimal solution,
although, it is considered as a solution good enough that is suitable for the current environment
at time ¢,,.

The terminal monitors 8¢ and () continuously. The execution of Algorithm 1 is
triggered by the value of &, which is computed according to Formula (12). We define & (") as
the threshold of &. If &€ > €M) then the algorithm is executed, whereas, if & < & then the
solution obtained from the last execution remains in use.

4. Simulation Results and Evaluations

The performance of our genetic algorithm enhanced by elite-based immigrants is evaluated
through simulations under different scenarios and from different aspects. We first measure the
performance via the parallel computation offloading and the traditional computation
offloading which offloads the computation of an application to the best computation device.
The comparison is carried out between them based on the performance with no computation
offloading. Then, the adaptivity of our algorithm is evaluated under the scenarios with variable
intensities of environment, and its precision of solution and its number of iterations are
measured and compared with a standard genetic algorithm without enhancements. The
parameters used in simulations are illustrated in Table 1.
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Table 1. The parameters used in simulations
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Name Meaning Value
m the number of vertices in G(® [3,9]
n the number of edges in G @ [3,9]
m’ the number of unoffloadable components 90%m
5l.(a) the values of weights in §® [10,50]MI
Hj(a) the values of weights in 8@ [0.05,1]MB
p the number of vertices in G© [3,9]
5 the values of weights in 8 [2,256]MIPS
Bj(c) the values of weights in () [0.256,128]MB/S
y the number of chromosomes in U 100
1) the number of groups of competitors y
n the number of chromosomes in a group of competitors 5
p the probability of crossover 30%
€ the probability of mutation 5%
g(base) the basic number of iterations 100
(i) the upper bound of the incremental iterations 500
F3C0) the threshold of ¢ 0.1

4.1 Performance of the Parallel and Traditional Computation Offloading

The total costs via the parallel computation offloading and the traditional computation
offloading are measured under different scales of G and G(©), and they are compared with
the total cost via the approach which offloads no components. The topologies and weights of
G @ and G(©) are randomly generated based on Table 1 unless stated clearly.

1.8

1.4

! !

I inimum total cost for offloading to multiple devices
1.6 I average total cost for offloading to multiple devices
I maximum total cost for offloading to multiple devices

I minimum total cost for offloading to no devices
I average total cost for offloading to no devices

minimum total cost for offloading to the best device

average total cost for offloading to the best device
maximum total cost for offloading to the best device

maximum total cost for offloading to no devices

0.8

total cost

0.6

0.4

0.2

m=5, n=5

Fig. 6. The average costs via the 3 approaches with variable G (@

m=3. n=3 m=7, n=7

m=9, n=9
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When the parameters of G () are variable and those of G (©) are fixed, the total cOsts via the
3 approaches are measured from 100 random cases, the minimum, maximum and average
costs are shown in 0. In the simulations, m and n are picked up from 3 to 9, respectively, and
p = 6, m —m' = 1 (the number of unoffloadable vertices). Generally, the total costs of the 3
approaches all increase with the increase of the scale of G (¥, because the amount of the whole
computation increases with the increase of the scale of G(®. It can be observed that the
average total costs for offloading to no computation devices are the highest for all G(®, since
all components of the application are executed in the terminal. On the contrary, the average
total costs by the other two approaches that use computation offloading are 30.71% and 51.54%
of those via the former approach on average. The parallel computation offloading is better than
the traditional approach that offloads the components to the best device. Its average total cost
for each G® is 79.86%, 58.2%, 49.75% and 47.61% of the corresponding one via the
approach that only considers a single device, respectively. The performance promotion is due
to the parallelism employed in the computation offloading, so the cost decreases when
components are offloaded to different computation devices. It can be also found that the gap
between the costs of the latter two approaches increase with the increase of the scale of G(@,
because the load of the computation device may rise as the number of components that are
offloaded to it increases, it will worsen the performance of computation offloading to a large
extent if the components are offloaded to a single device, whereas, the parallel computation
offloading allocates the components to different devices, so it can balance the loads of
computation devices and alleviate the performance deterioration brought by the increase of the
scale of G (@,

When the parameters of G (¥ are fixed and those of G (©) are variable, the total costs via the
3 approaches are measured from 100 random cases, the minimum, maximum and average
costs are shown in 0. The value of p is chosen from 3 to 9 in the simulations, and m = 8,
n=8, m—m' =1 (the number of unoffloadable vertices). It can be seen that the
performance via the parallel computation offloading is still the best, and that via the traditional
approach is the following, and that via the approach without computation offloading is the
worst. Generally, the average total cost via the approach without computation offloading is
nearly invariant with the increase of the scale of G (©), since all components run in the terminal
and m, n are fixed in the simulations. The average total costs via the other two approaches all
decrease with the increase of the scale of G(©), because there are more chances that a
component is chosen to offload to a more proper computation devices as the scale of G
increases. The average total costs by the two approaches that use computation offloading are
20.03% and 27.19% of those via the former approach on average, and the average total by the
parallel computation offloading for each G(©) is 87.19%, 70.25%, 69.35% and 66.17% of the
corresponding one via the approach only considering a single device, respectively. It can be
found that the gap between the two approaches grows as the scale of G(©) increases, since
parallelism is promoted with the increase of the number of computation devices, so there are
more choices that components can be offloaded to multiple devices.
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I minimum total cost for offloading to multiple devices
| average total cost for offloading to multiple devices
I maximum total cost for offloading to multiple devices
minimum total cost for offloading to the best device
average total cost for offloading to the best device
maximum total cost for offloading to the best device
I minimum total cost for offloading to no devices
I average total cost for offloading to no devices
maximum total cost for offloading to no devices

total cost

p=3

p=5

p=7 p=9

Fig. 7. The average costs via the 3 approaches with variable G

4.2 Performance of the Algorithm with Variable Intensities of Environment

Change

In order to evaluate the adaptivity of the algorithm, three scenarios with different intensities of
environment change are instanced: low, medium and high. The variations of ¢ of the three
scenarios are shown in 0, and they are triggered at each time with interval 20s, 10s and 5s,
respectively. The values of 8(©) and 8 for the scenarios first increase before 60s, 30s and
15s, and then decrease after 80s, 40s and 20s, respectively.

In the simulations of the three scenarios, the parameters of G(® and the topology of G (©
are fixed. The total costs via our algorithm and the standard genetic algorithm are measured
every 50 iterations, and the total cost of the corresponding optimal solution at each time

interval is also marked as the reference.
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4.2.1 Low Intensities of Environment Change

In the scenarios with low intensities of environment change, the values of & are chosen from 0%
at Os, increase by 7.5% at 20s, increase by 7.5% at 40s, increase by 22.5% at 60s, decrease by
22.5% at 80s, decrease by 22.5% at 100s, decrease by 22.5% at 120s. The variation of &
describes the intensity of a relatively stable environment. The total costs via the two
algorithms are shown in 0 and 0. It can be found that the variation of the total costs during the
iterations of our algorithm are lower than that during the iterations of the standard genetic
algorithm, which demonstrates the fast convergence of our algorithm. As shown in 0, the
standard genetic algorithm takes 600 iterations (z(?25¢) 4 ¢(in¢) = 600) at each time when the
change of ¢ is triggered (0s, 20s, 40s, 60s, 80s, 100s, 120s), whereas, according to Formula
(14) the iterations consumed by our algorithm is 600 at Os, 0 at 20s, 488 at 40s, 488 at 60s, 488
at 80s, 525 at 100s, 0 at 120s. At time Os and 120s, our algorithm is not executed due to
& =0.075 < £M = 0.1, thus, verbose executions for slight variation of & are avoided, and
algorithm cost is alleviated in this way. The average errors between the optimal value and the
values computed from the two algorithm are 0.37% and 0.31%, respectively, which prove that,
in environments with low intensities, through the mechanism of elite-based immigrants, our
algorithm can approach a high precise solution which is quite close to that via the standard
genetic algorithm that uses more iterations.

*  optimal solution

* standard genetic algorithm

IS
3
number of Iterations

K " X « 'V genetic algorithm enhanced by elite-based immigrants
X 1 -

10— ¢ 3 *  standard genetic algorithm

£3

I I I
0
0 20 0 60 80 100 120 0 » 40 €0 8 10 120
time (s)

tima (o)

Fig. 10. The total costs in scenarios with low & Fig. 11. The number of iterations with low ¢ via
via the standard genetic algorithm the our algorithm and the standard genetic
algorithm

4.2.2 Medium Intensities of Environment Change

In the scenarios with medium intensities of environment change, the values of ¢ are chosen
from 0% at Os, increase by 15% at 10s, increase by 30% at 20s, increase by 45% at 30s,
decrease by 45% at 40s, decrease by 45% at 50s, decrease by 30% at 60s. The total costs via
the two algorithms are shown in 0 and 0. In the simulations, our algorithm is triggered at every
time interval since the corresponding ¢ > 0.1. The convergence speed of our algorithm is
faster than that of the standard genetic algorithm due to the elite-based immigrants mechanism.
As regards to our algorithm, it can be found that the variations of the total costs during the
iterations are diverse for different time. Referred to the performance of the standard genetic
algorithm at each time interval, the variations of our algorithm is low at the time with low &
(10s, 20s, 50s, 60s), whereas, the variations increase properly at the time with high & (30s,
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40s). This is because that ¢ decreases with the increase of & according to Formula (13). The
immigrants become less valuable when the intensity of the environment increases, conversely,
they may disturb the convergence of the solving process, and make the solution converge at a
suboptimal location. As shown in 0, the standard genetic algorithm takes 600 iterations at each
time when the change of ¢ is triggered (0s, 10s, 20s, 30s, 40s, 50s, 60s), whereas, the iterations
consumed by our algorithm is 600 at Os, 525 at 10s, 450 at 20s, 375 at 30s, 375 at 40s, 450 at
50s, 525 at 60s. The average errors between the optimal value and the values computed from
the two algorithms are 1.62% and 1.18%, respectively. It demonstrates that in environments
with medium intensities, our algorithm can reach a precise solution with less iterations.
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4.2.2High Intensities of Environment Change
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In the scenarios with high intensities of environment change, the values of ¢ are chosen from 0%
at 0s, increase by 30% at 5s, increase by 60% at 10s, increase by 90% at 15s, decrease by 90%
at 20s, decrease by 60% at 25s, decrease by 30% at 30s. The simulation results via the two
algorithms are shown in 0 and 0. In the environments with high &, the time consumed by the
algorithms is vital since the effectiveness is more important than the precision of the solution.
In a highly variable environment, the solution may expire if too long time is taken by the
algorithm to obtain it, so the execution time of the algorithm needs to decrease to prolong the
life time of the solution. In the simulation, It can be found that T decreases with the increase of
&, this is due to the mechanism of iteration control in our algorithm according to Formula (12).
As shown in 0, the iterations used by our algorithm for each time interval are 600 at 0s, 450 at
5s, 300 at 10s, 150 at 15s, 150 at 20s, 300 at 25s, 450 at 30s, whereas, the iterations of the
standard genetic algorithm are all 600. The average errors between the optimal value and the
values computed from the two algorithm are 5.16% and 4.25%, respectively, which proves
that in the environments with high intensities, our algorithm still keeps a relative precious
solution while restricting the number of iterations.

5. Conclusion

Computation offloading is a promising technology to alleviate the contradiction between
computation-occupying applications and resource-constrained terminals. This paper focuses
on the application multi-partitioning problem for parallel computation offloading, and
proposes an adaptive application component mapping algorithm for parallel computation
offloading in variable environments. The algorithm is under the scenarios that the components
of an application are offloaded in parallel to multiple computation devices around the terminal,
and it models the multi-partitioning problem as a graph mapping model, converts it into a
pathfinding problem, then uses a genetic algorithm enhanced by elite-based immigrants to
obtain suitable mapping results for the environments with variable transmission speeds of
network connections and processing speeds of computation devices. An adaptivity mechanism
is designed to adaptively adjust the precision of the solution and promote the searching speed
through change the number of iterations and the proportion of elite immigrants. Simulation
results demonstrate that our algorithm can promote the performance of parallel computation
offloading efficiently, and its adaptivity in variable environments outperforms traditional
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approaches to a large extent.
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