• Title/Summary/Keyword: component modeling

Search Result 1,051, Processing Time 0.039 seconds

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

An Integrated Water Budget Analysis of Oedocheon Watershed in Jeju Island (제주 외도천 유역의 통합 물수지 분석)

  • Kim, Nam Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.471-480
    • /
    • 2015
  • Hydrologic component analysis was conducted to investigate water budget characteristics the Oedocheon watershed, Jeju Island. For this purpose, integrated SWAT-MODFLOW model was applied to this watershed for continuous surface water-groundwater modeling. Pasture and forest-deciduous are the major land use types and these affect general hydrologic component ratio. The spatio-temporal groundwater recharge can be obtained from SWAT and then distributed groundwater recharge can be reproduced by MODFLOW. The groundwater level variation was simulated with distributed groundwater pumping data. The water budget in this watershed was compared with the previous estimated result by Jeju-Do(2013). As this result considered discharge to the coastal side, the discrepancy was found. However, it was found that the overall tendency of both analyses were similar.

Effects of Group Delay and Non-linear Characteristics in Ka-Band High Data Rate Satellite Communication System (Ka 대역 초고속 위성통신 시스템에 대한 군지연 및 비선형 특성의 영향)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.600-610
    • /
    • 2001
  • The effects of group delay and non-linear characteristics on high data rate(HDR) satellite channel are presented in this paper Based on the modeling of group delay and non-linear characteristics the system performances which provide various data rate services were analyzed in Ka-band satellite channel. As the transmission data rate is increased, the degradation due to these channel characteristics is severely increased. The linear component of group delay and the AM-AM component of non-linear characteristics severely affect the system performance. To efficiently provide the various service via the same transmission system it is necessary to equalize the primary impairment factors. The optimum operating points of HDR satellite transmission system are implemented by considering the analyzed results on channel characteristics.

  • PDF

Extension of UML to Represent Components Interface Focusing on Interaction (상호작용 중심의 컴포넌트 인터페이스를 표현하기 위한 UML의 확장)

  • Park, Seong-Ho;Choe, Eun-Man
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.65-74
    • /
    • 2002
  • This paper focuses components interactions which is important factor in designing software components. We classified several types of interaction between components and suggested appropriate graphical notation to extend UML and design process with extended method. Suggested notation and process was verified by practical experiment which is performed in travel agent component application. Representing interaction between components is not same to representing association between classes. UML in current version needs to be extended for representing this kind of components interaction. This research covers UML extension for components interaction and experiment for showing effectiveness.

A Statistical Approach to Screening Product Design Variables for Modeling Product Usability (사용편의성에 영향을 미치는 제품 설계 변수의 통계적 선별 방법)

  • Kim, Jong-Seo;Han, Seong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.23-37
    • /
    • 2000
  • Usability is one of the most important factors that affect customers' decision to purchase a product. Several studies have been conducted to model the relationship between the product design variables and the product usability. Since there could be hundreds of design variables to be considered in the model, a variable screening method is required. Traditional variable screening methods are based on expert opinions (Expert screening) in most Kansei engineering studies. Suggested in this study are statistical methods for screening important design variables by using the principal component regression(PCR), cluster analysis, and partial least squares(PLS) method. Product variables with high effect (PCR screening and PLS screening) or representative variables (Cluster screening) can be used to model the usability. Proposed variable screening methods are used to model the usability for 36 audio/visual products. The three analysis methods (PCR, Cluster, and PLS) show better model performance than the Expert screening in terms of $R^2$, the number of variables in the model, and PRESS. It is expected that these methods can be used for screening the product design variables efficiently.

  • PDF

A Study of Inverse Modeling from Micro Gas Turbine Experimental Test Data (소형 가스터빈 엔진 실험 데이터를 이용한 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2009
  • The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an expensive intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data, but this method is limited to obtain the realistic maps due to calculated performance deck data. Therefore this work proposes newly to generate more realistic compressor map from experimental performance test data. And then a realistic compressor map can be generated form those processed data using the proposed extended scaling method at each rotational speed. Evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.

The Identification of Load Characteristic using Artificial Neural Network for Load Modeline (부하모델을 위한 신경회로망을 이용한 부하특성 식별)

  • 임재윤;김태응;이종필;지평식;남상천;김정훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.103-110
    • /
    • 1998
  • The modeling of load characteristics is a difficult problem because of uncertainty of load. This research uses artificial neural networks which can approximate nonlinear problem to represent load characteristics. After the selection of typical load, active and reactive power for the variation of voltage and frequency is obtained from experiments. We constructed and learned ANN based on these data for component load identification. The learned ANN identified load characteristics for other voltage and/or frequency variation. In addition, the results of component load identification are presented to demonstrate the potentiality of the proposed method.method.

  • PDF

A Study on the Power Spectral Analysis of Heart Rate Variability (HRV의 전력스펙트럼 분석에 관한 연구)

  • Chung, S.J.;Jeong, K.S.;Shin, K.S.;Lee, B.C.;Lee, M.H.;Ahn, J.;Chun, J.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.217-220
    • /
    • 1996
  • In this paper, we compare three mehods to obtain PSD of HRV - FFT, AR modeling, and residual integration. Using these methods we speculate the balances of the LP and HF powers of HRV at $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ tilt levels of head-up tilt table for young and healthy 24 men. R peaks are located at the highest point of QRS complex detected from modified spacial velocity algorithm. In general FFT is the most fast way to obtain PSD but PSD from FFT has too many peaks and valleies. AR PSD can show frequency of ANS activity effectively but LF component of PSD is often invisible due to interference of VLF power. The residual integration method that decomposes the AR PSD is very efficient way to extract LF component. Applying the above three methods to HRV we can visualize the trend of PSD variations along tilt levels.

  • PDF

Multi-Stage Forming Analysis of a Milli-Component for Improvement of Forming Accuracy (밀리부품의 정밀도 향상을 위한 다단계 성형 및 금형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Na, G.H.;Park, H.J.;Choi, T.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.429-434
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components need more precise manufacturing process than the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable for accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.